线性代数 求逆矩阵 例题12 求A的逆矩阵 请给出过程 谢谢 (我算的和答案不一样)
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
用初等行变化求矩阵的逆矩阵,
即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆
在这里
(A,E)=
1 2 3 1 0 0
2 2 1 0 1 0
3 4 3 0 0 1 r2-2r1,r3-3r1
~
1 2 3 1 0 0
0 -2 -5 -2 1 0
0 -2 -6 -3 0 1 r1+r2, r3-r2
~
1 0 -2 -1 1 0
0 -2 -5 -2 1 0
0 0 -1 -1 -1 1 r1-2r3,r2-5r3,r3*(-1)
~
1 0 0 1 3 -2
0 -2 0 3 6 -5
0 0 1 1 1 -1 r2/(-2)
~
1 0 0 1 3 -2
0 1 0 -3/2 -3 5/2
0 0 1 1 1 -1
这样就已经通过初等行变换把(A,E)~(E,A^-1)
于是得到了原矩阵的逆矩阵就是
1 3 -2
-3/2 -3 5/2
1 1 -1
即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆
在这里
(A,E)=
1 2 3 1 0 0
2 2 1 0 1 0
3 4 3 0 0 1 r2-2r1,r3-3r1
~
1 2 3 1 0 0
0 -2 -5 -2 1 0
0 -2 -6 -3 0 1 r1+r2, r3-r2
~
1 0 -2 -1 1 0
0 -2 -5 -2 1 0
0 0 -1 -1 -1 1 r1-2r3,r2-5r3,r3*(-1)
~
1 0 0 1 3 -2
0 -2 0 3 6 -5
0 0 1 1 1 -1 r2/(-2)
~
1 0 0 1 3 -2
0 1 0 -3/2 -3 5/2
0 0 1 1 1 -1
这样就已经通过初等行变换把(A,E)~(E,A^-1)
于是得到了原矩阵的逆矩阵就是
1 3 -2
-3/2 -3 5/2
1 1 -1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询