关于二次函数问题

如图,在平面直角坐标系中,抛物线y=-x2+bx经过A(2,0),直线y=x+m分别交x轴、y轴于点C、B,点D是抛物线上横坐标为m的点,作DE⊥x轴于E,DE所在的直线... 如图,在平面直角坐标系中,抛物线y=-x2+bx经过A(2,0),直线y=x+m分别交x轴、y轴于点C、B,点D是抛物线上横坐标为m的点,作DE⊥x轴于E,DE所在的直线与直线y=x+m交于点F.
(1)求该抛物线解析式;
(2)随着m的变化,试探究:
①当m取何值时,点D和点F重合;
②当1<m<2时,用含m的代数式表示DF的长度;
(3)将DF绕D顺时针旋转90°得到DF′,连结E F′,是否存在△DE F′与△CEF相似?若有,请求出m的值;若没有,请说明理由.
答案
展开
 我来答
真富贵考钗
2019-05-03 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:800万
展开全部
y=x²+(2-m)x+m=m(1-x)+(x²+2x)
要过定点则与m无关,m前系数为0,即1-x=0
∴x=1,此时y=x²+2x=3
∴图像过定点(1,3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式