a^2+b^2=1,c^2+d^2=1,且ac+bd=0,求ab+cd的值
1个回答
展开全部
∵ac+bd=0.∴两边平方可得:a ²c ²+2abcd+b ²d ²=0
∴2abcd=-a ²c ²-b ²d ²
可设x=ab+cd.两边平方可得:
x ²=a ²b ²+2abcd+c ²d ²
=a ²b ²-a ²c ²-b ²d ²+c ²d ²
=a ²(b ²-c ²)-d ²(b ²-c ²)
=(a ²-d ²)(b ²-c ²)
=-(a ²-d ²)².
即x ²=-(a ²-d ²)²≤0.又x ²≥0.
∴x=0.即ab+cd=0.
∴2abcd=-a ²c ²-b ²d ²
可设x=ab+cd.两边平方可得:
x ²=a ²b ²+2abcd+c ²d ²
=a ²b ²-a ²c ²-b ²d ²+c ²d ²
=a ²(b ²-c ²)-d ²(b ²-c ²)
=(a ²-d ²)(b ²-c ²)
=-(a ²-d ²)².
即x ²=-(a ²-d ²)²≤0.又x ²≥0.
∴x=0.即ab+cd=0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询