期望值公式
投资生产A产品的期望为64万元,投资生产B产品的期望为41万元。
解答过程为:
1、先求A,B两种产品成功的概率:
P(A)=40/50=0.8,P(B)=35/50=0.7。
2、投资生产A产品的期望为E(A)=0.8*100+0.2*(-80)=64;
投资生产B产品的期望为E(B)=0.7*80+0.3*(-50)=41。
E(A)>E(B)
所以投资A产品要好,因为A平均获利水平高于B。
扩展资料:
数学期望的性质:
1、设X是随机变量,C是常数,则E(CX)=CE(X)。
2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。
3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。
4、设C为常数,则E(C)=C。
期望的应用
1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。
2021-01-25 广告
离散型随机变量X的取值为 , 为X对应取值的概率,可理解为数据 出现的频率 ,则:。
其中E(x)为期望,∑为求和公式。
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
扩展资料:
数学期望的来历:
在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。
因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。
参考资料:百度百科-期望
投资生产A产品的期望为64万元,投资生产B产品的期望为41万元。
解答过程为:
1、先求A,B两种产品成功的概率:
P(A)=40/50=0.8,P(B)=35/50=0.7。
2、投资生产A产品的期望为E(A)=0.8*100+0.2*(-80)=64;
投资生产B产品的期望为E(B)=0.7*80+0.3*(-50)=41。
E(A)>E(B)
所以投资A产品要好,因为A平均获利水平高于B。
扩展资料:
数学期望的性质:
1、设X是随机变量,C是常数,则E(CX)=CE(X)。
2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。
3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。
4、设C为常数,则E(C)=C。
期望的应用
1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。
注意是情况对应的概率,我举的例子概率都是1/6(上面错了。。)所以才都成1/6