高二数学椭圆问题 20
已知F1、F2是椭圆C:x²/a²+y²/b²=1的两个焦点,P为椭圆C上一点,且向量PF1垂直向量PF2若三角形PF1F2的面积...
已知F1、F2是椭圆C:x²/a²+y²/b²=1的两个焦点,P为椭圆C上一点,且向量PF1垂直向量PF2若三角形PF1F2的面积为9,则b=?
答案是:由题意知△PF1F2的面积=b²*tan90/2=b²=9
b=3
请问怎么来的?? 展开
答案是:由题意知△PF1F2的面积=b²*tan90/2=b²=9
b=3
请问怎么来的?? 展开
1个回答
2015-11-01
展开全部
三角形pf1f2的面积=pf1*pf2*0.5pf1+pf2=2c2pf1*pf2=36由此可知△PF1F2的面积=b²*tan90/2=b²=9 b=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询