lim(x→0)-1/x²+(2-x)/2√(1-x)x²
=lim(x→0)(-√(1-x)+1-x/2)/√(1-x)x²
=lim(x→0)(x-1+√(1-x)-x√(1-x)/2)/(1-x)x²
=lim(x→0)[1-1/2√(1-x)-√(1-x)/2+x/4√(1-x)]/(2x-3x²)
=lim(x→0){-¼(1-x)^(-3/2)+1/4√(1-x)+¼·[√(1-x)+x/√(1-x)]/(1-x)}/(2-6x)
=1/4/2
=1/8
(0/0型,用两次洛必达法则)