ICP算法的迭代就近点算法

 我来答 举报
献光明向阳7212
2016-05-28 · TA获得超过215个赞
知道答主
回答量:177
采纳率:0%
帮助的人:124万
展开全部

在20世纪80年代中期,很多学者开始对点集数据的配准进行了大量研究。1987年,Horn[1]、Arun[2]等人用四元数法提出点集对点集配准方法。这种点集与点集坐标系匹配算法通过实践证明是一个解决复杂配准问题的关键方法。1992年,计算机视觉研究者Besl和Mckay[3]介绍了一种高层次的基于自由形态曲面的配准方法,也称为迭代就近点法ICP(Iterative Closest Point)。以点集对点集(PSTPS)配准方法为基础,他们阐述了一种曲面拟合算法,该算法是基于四元数的点集到点集配准方法。从测量点集中确定其对应的就近点点集后,运用Faugera和Hebert提出的方法计算新的就近点点集。用该方法进行迭代计算,直到残差平方和所构成的目标函数值不变,结束迭代过程。ICP配准法主要用于解决基于自由形态曲面的配准问题。
迭代就近点法ICP就近点法经过十几年的发展,不断地得到了完善和补充。Chen和Medioni[4]及Bergevin等人[5]提出了point-to-plane搜索就近点的精确配准方法。Rusinkiewicz和Levoy提出了point-to-p rojection搜索就近点的快速配准方法。Soon-Yong和Murali提出了Contractive-projection-point搜索就近点的配准方法。此外,Andrew和Sing[6]提取了基于彩色三维扫描数据点纹理信息的数据配准方法,主要在ICP算法中考虑三维扫描点的纹理色彩信息进行搜索就近点。Natasha等人[7]分析了ICP算法中的点云数据配准质量问题。
基本原理
三维空间R3存在两组含有n个坐标点的点集,分别为: PL和PR。三维空间点集PL中各点经过三维空间变换后与点集PR中点一一对应,其单点变换关系式为:
(0-1)
上式中,R为三维旋转矩阵,t为平移向量。
在ICP配准方法中,空间变换参数向量X可表示为[9] 。参数向量中四元数参数满足约束条件为:
(0-2)
根据迭代的初值X0,由式(0-1)计算新点集Pi为:
(0-3)
式中,P表示原始未修改过的点集,Pi的下标i表示迭代次数,参数向量X的初始值X0为 。
根据以上数据处理方法,ICP配准算法可以概括为以下七个步骤:
1) 根据点集Plk中的点坐标,在曲面S上搜索相应就近点点集Prk;
2) 计算两个点集的重心位置坐标,并进行点集中心化生成新的点集;
3) 由新的点集计算正定矩阵N,并计算N的最大特征值及其最大特征向量;
4) 由于最大特征向量等价于残差平方和最小时的旋转四元数,将四元数转换为旋转矩阵R;
5) 在旋转矩阵R被确定后,由平移向量t仅仅是两个点集的重心差异,可以通过两个坐标系中的重心点和旋转矩阵确定;
6) 根据式(0-3),由点集Plk计算旋转后的点集P’lk。通过Plk与P’lk计算距离平方和值为fk+1。以连续两次距离平方和之差绝对值 作为迭代判断数值;
7) 当 时,ICP配准算法就停止迭代,否则重复1至6步,直到满足条件 后停止迭代。

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式