平面图形和立体图形的公式。
平面图形和立体图形的公式:
1、平面图形公式:
长方形的周长=(长+宽)×2 、正方形的周长=边长×4、 圆的周长=圆周率×直径=圆周率×半径×2 、半径=直径÷2
长方形的面积=长×宽 、平行四边形的面积=底×高、正方形的面积=边长×边长 、梯形的面积=(上底+下底)×高÷2 、圆的面积=圆周率×半径×半径
2、立体图形公式:
长方体的表面积=2×(长×宽+长×高+宽×高) 用符号表示是:S=2(ab+bc+ca)
长方体的体积 =长×宽×高 用符号表示是:V=abh 或底面积×高 用符号表示是:V=Sh
正方体的表面积=棱长×棱长×6 用符号表示是:S=a²×6
正方体的体积=棱长×棱长×棱长 用符号表示是:V=a³
圆柱的侧面积=底面周长×高 用符号表示是:S侧=πd×h
圆柱的表面积=2×底面积+侧面积 用符号表示是:S=πr²×2+dπh
圆柱的体积=底面积×高 用符号表示是:V=πr²×h
圆锥的体积=底面积×高÷3 用符号表示是:V=πr²×h÷3
圆锥侧面积=1/2*母线长*底面周长
圆台体积=[S+S′+√(SS′)]h÷3
球体体积=(1/3*S*h)*(4*pi*R²)/S=4/3*pi*R²
扩展资料
平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。
平面图形是平面几何研究的对象。
正方形 S=a² 或对角线×对角线÷2 C=4a
平行四边形 S=ah
三角形 S=ah÷2
梯形 S=(a+b)×h÷2
圆形 S=πr2 C=πd
椭圆 S=πr
所有点不在同一平面上的图形叫立体图形。
对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。
平面图形和立体图形区别如下:
1、所含平面数量不同。
平面图形是存在于一个平面上的图形,例如正方形、长方形、圆形等图形,而立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同,如正方体含六个平面,圆柱含有三个面等。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同,且正方体等的规则立体图形最多可同时观察到三个平面。
4、具有属性不同。
平面图形具有长宽等属性,没有高度,而立体图形具有长宽高的属性。
参考资料来源:百度百科-平面图形
参考资料来源:百度百科-立体图形
(1)周长(外周围的长度)
C长方形 =(长+宽) ×2
C平行四边形=相邻两边长之和的2倍
C正方形=边长×4
C圆=2πr(r为半径)= πd(d为直径)
C梯形=两底长+两腰长
(2)面积
S△=底×高÷2 =ah÷2
S长方形=长×宽=ab
S平行四边形=底×高=ab
S正方形=边长的平方a^2
S圆=πr^2(r是半径)
S梯形=(上底+下底) ×高÷2 =h(a+b)÷2
圆柱体的计算公式如下:
圆柱体侧面积公式:侧面积=底面周长×高 S侧=C底×h
圆柱体的表面积公式:表面积=2πr2+底面周长×高 S表=S底+C底×h
圆柱体的体积公式:体积=底面积×高 V圆柱=S底×h
长方体的体积公式:
长方体的体积=长X宽X高
如果用a、b、h分别表示长方体的长、宽、高则公式为:V长=abh
正方体的表面积公式:
表面积=棱长×棱长×6 S正=6a^2
正方体的体积公式:
正方体的体积=棱长×棱长×棱长=a·a·a=a^3
圆锥体的体积=1/3×底面面积×高 V圆锥=1/3×S底×h
2016-05-17
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
希望能帮到你,满意望采纳哦。