行程问题相遇应用题及答案

行程问题相遇应用题及答案... 行程问题相遇应用题及答案 展开
 我来答
洱夜
2017-05-29 · TA获得超过145个赞
知道答主
回答量:6
采纳率:50%
帮助的人:5715
展开全部
1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?
分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟
解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟
因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟
答:他走后一半路程用了42.5分钟。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?
分析:解法1:设路程为180,则上坡和下坡均是90。设走平路的速度是2,则下坡速度是3。走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75
解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75
答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。那么甲、乙两地之间的距离是多少千米?
~ 1 / 24 ~
分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。甲、乙两地距离是12*1+3=15千米
解法2,顺水每小时比逆水多行驶8千米,实际第二小时比第一小时多行驶6千米,顺水行驶时间=6/8=3/4小时,逆水行驶时间=2-3/4=5/4,顺水速度:逆水速度=5/4:3/4=5:3,顺水速度=8*5/(5-3)=20千米/小时,两地距离=20*3/4=15千米。
答:甲、乙两地距离之间的距离是15千米。
4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟?
分析:骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出。骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5*8=40(分钟)。
答:他从乙站到甲站用了40分钟。
5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。问:甲现在离起点多少米?
分析:甲、乙速度相同,当乙游到甲现在的位置时,甲也又游过相同距离,两人各游了(98-20)/2=39(米),甲现在位置:39+20=59(米)
答:甲现在离起点59米。
6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。问:东西两地的距离是多少千米?
~ 2 / 24 ~
分析:解法1:甲比乙1小时多走8千米,一共多走32*2=64千米,用了64/8=8小时,所以距离是8*(56+48)=832(千米)
解法2:设东西两地距离的一半是X千米,则有:48*(X+32)=56*(X-32),解得X=416,距离是2*416=832(千米)
解法3:甲乙速度比=56:48=7:6,相遇时,甲比乙多行=(7-6)/(7+6)=1/13,两地距离=2*32/(1/13)=832千米。
答:东西两地间的距离是832千米。
7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:骑车人每小时行驶多少千米?
分析:老师速度=4+1.2=5.2(千米),与李相遇时间是老师出发后(20.4-4*0.5)/(4+5.2)=2(小时),相遇地点距离学校4*(0.5+2)=10(千米),所以骑车人速度=10/(2+0.5-2)=20(千米)
答:骑车人每小时行驶20千米。
8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?
分析:解法1,快车5小时行过的距离是慢车12.5-5=7.5小时行的距离,慢车速度/快车速度=5/7.5=2/3。两车行1个单程用5小时,如果不停,再次相遇需要5*2=10小时,如果两车都停0.5小时,则需要10.5小时再次相遇。快车多停30分钟,这段路程快车与慢车一起走,需要30/(1+2/3)=18(分钟)所以10.5小时+18分钟=10小时48分钟
解法2:回程慢车比快车多开半小时,这半小时慢车走了0.5/12.5=1/25全程,两车合起来少开1/25,节省时间=5*1/25=0.2小时,所以,从第一次相遇到第二次相遇需要=5*2+1-0.2=10.8小时。
~ 3 / 24 ~
答:两车从第一次相遇到第二次相遇需要10小时48分钟。
9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。问:汽车速度是劳模步行速度的几倍?
解:汽车走单程需要60/2=30分钟,实际走了40/2=20分钟的路程,说明相遇时间是2:20,2点20分相遇时,劳模走了60+20=80分钟,这段距离汽车要走30-20=10分钟,所以车速/劳模速度=80/10=8
答:汽车速度是劳模步行速度的8倍。
10、已知甲的步行的速度是乙的1.4倍。甲、乙两人分别由A,B两地同时出发。如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?
分析:两人相向而行,路程之和是AB,AB=速度和*0.5;同向而行,路程之差是AB,AB=速度差*追及时间。速度和=1.4+1=2.4,速度差=1.4-1=0.4。所以:追及时间=速度和/速度差*0.5=2.4/0.4*0.5=3(小时)
答:甲追上乙需要3小时。

11、猎狗发现在离它10米的前方有一只奔跑着的兔子,马上紧追上去。兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。问狗追上兔时,共跑了多少米路程?
分析:狗跑2步时间里兔跑3步,则狗跑6步时间里兔跑9步,兔走了狗5步的距离,距离缩小1步。狗速=6*速度差,路程=10*6=60(米)
答:狗追上兔时,共跑了60米。
12、张、李两人骑车同进从甲地出发,向同一方向行进。张的速度比李的速度每小时快4千米,张比李早到20分钟通过途中乙地。当李到达乙地时,张又前进了8千米。那么甲、乙两地之间的距离是多少千米?
分析:解法1,张速度每小时8/(20/60)=24(千米),李速度每小时24-4=20(千米),张到乙时超过李距离是20*(20/60)=20/3(千米)所以甲乙距离=24*(20/3/4)=40(千米)
~ 4 / 24 ~
解法2:张比李每小时快4千米,现共多前进了8千米,即共骑了8/4=2小时,张从甲到乙用了2*60-20=100分钟,所以甲乙两地距离=(100/20)*8=40千米。
答:甲、乙两地之间的距离是40千米。
13、上午8时8分,小明骑自行车从家里出发;8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他;然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米。问这时是几时几分?
分析:爸爸第一次追上小明离家4千米,如果等8分钟,再追上时应该离家8千米,说明爸爸8分钟行8千米,爸爸一共行了8+8=16分钟,时间是8点8分+8分+16分=8点32分。
答:这时8点32分。
14、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。那么兔子睡觉期间,乌龟跑了多少米?
分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米
答:兔子睡觉期间乌龟跑了8020米。
15、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的0.8倍。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟后,才继续驶往乙地;在小轿车出发后中途没有停,直接驶往乙地,最后小轿车却比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的,求小轿车追上大轿车的时间。
分析:解法1,大车如果中间不停车,要比小车多费17-5+4=16分钟,大车用的时间与小车用的时间之比是速度比的倒数,即1/0.8=5/4,所以大车行驶时间是16/(5-4)*5=80分钟,小车行驶时间是80-16=64分钟,走到中间分别用了40和32分钟。大车10点出发,到中间点是10点40分,离开中点是10点45分,到达终点是11点25分。小车10点17分出发,到中间点是10点49分,比大车晚4分;到终点是11点21分,比大车早4分。所以小车追上大车的时间是在从中间点到终点之间的正中间,11点5分。
解法2:大轿车的速度是小轿车速度的0.8倍,大轿车的用时是小轿车用时的1/0.8=1.25倍,大轿车比小轿车多用时17-5+4=16分钟,大轿车行驶时间=16*(1.25/0.25)=80分钟,小轿车行驶时间=16/(0.25)=64分钟,小轿车比大轿车实际晚开17-5=12分钟,追上需要=12*0.8/(1-0.8)=48分钟,48+17=65分=1小时5分,所以,小轿车追上大轿车的时间是11时5分
答:小轿车追上大轿车的时间是11点5分。
行程问题(二)
走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:
距离=速度×时间
很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如
总量=每个人的数量×人数.
工作量=工作效率×时间.
因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.
当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.
这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米
一、追及与相遇
有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,
甲走的距离-乙走的距离
= 甲的速度×时间-乙的速度×时间
~ 6 / 24 ~
=(甲的速度-乙的速度)×时间.
通常,“追及问题”要考虑速度差.
例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?
解:先计算,从学校开出,到面包车到达城门用了多少时间.
此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此
所用时间=9÷6=1.5(小时).
小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是

面包车速度是 54-6=48(千米/小时).
城门离学校的距离是
48×1.5=72(千米).
答:学校到城门的距离是72千米.
例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?
解一:可以作为“追及问题”处理.
假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是
50 ×10÷(75- 50)= 20(分钟)?
因此,小张走的距离是
75× 20= 1500(米).
答:从家到公园的距离是1500米.
还有一种不少人采用的方法.
解二:小张加快速度后,每走1米,可节约时间(1/75-1/50)分钟,因此家到公园的距离是

一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.
例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少?
解一:自行车1小时走了
30×1-已超前距离,
自行车40分钟走了

自行车多走20分钟,走了
~ 7 / 24 ~

因此,自行车的速度是

答:自行车速度是20千米/小时.
解二:因为追上所需时间=追上距离÷速度差
1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:

马上可看出前一速度差是15.自行车速度是
35- 15= 20(千米/小时).
解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.
例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?
解:画一张简单的示意图:

图上可以看出,从爸爸第一次追上到第二次追上,小明走了
8-4=4(千米).
而爸爸骑的距离是 4+ 8= 12(千米).
这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).
但事实上,爸爸少用了8分钟,骑行了
4+12=16(千米).
少骑行24-16=8(千米).
摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.
8+8+16=32.
答:这时是8点32分.
下面讲“相遇问题”.
小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么
甲走的距离+乙走的距离
=甲的速度×时间+乙的速度×时间
=(甲的速度+乙的速度)×时间.
“相遇问题”,常常要考虑两人的速度和.
例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?
解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是
~ 8 / 24 ~
36÷(3+1)=9(分钟).
答:两人在9分钟后相遇.
例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.
解:画一张示意图

离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米
小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是
2÷(5-4)=2(小时).
因此,甲、乙两地的距离是
(5+ 4)×2=18(千米).
本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.
请再看一个例子.
例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.
解:先画一张行程示意图如下

设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.
下面的考虑重点转向速度差.
在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点
~ 9 / 24 ~
(或E点)相遇所用时间是
28÷5= 5.6(小时).
比C点相遇少用 6-5.6=0.4(小时).
甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是
12÷0.4=30(千米/小时).
同样道理,乙的速度是
16÷0.4=40(千米/小时).
A到 B距离是(30+ 40)×6= 420(千米).
答: A,B两地距离是 420千米.
很明显,例7不能简单地说成是“相遇问题”.
例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.

问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?
(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?
解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了

因此在 B与 C之间平路上留下 3- 1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是
2 ÷(4+ 4)×60= 15(分钟).
从出发到相遇的时间是
25+ 15= 40 (分钟).
(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.
小张走15分钟平路到达D点,45分钟可走

小张离终点还有2.5-1.5=1(千米).
答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.
二、环形路上的行程问题
人在环形路上行走,计算行程距离常常与环形路的周长有关.
例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轻舞独舞千年雪
2017-07-08
知道答主
回答量:1
采纳率:0%
帮助的人:964
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友61e44e4
2017-06-13
知道答主
回答量:1
采纳率:0%
帮助的人:973
展开全部
好简单我是学霸,这种题小儿科,开个玩笑😂我是学渣
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式