已知两个正项数列{An}和{Bn}满足an+bn=n-1求证根号An+1/2+根号bn+1/ 2<=根号2n
已知两个正项数列{An}和{Bn}满足an+bn=n-1求证根号An+1/2+根号bn+1/2<=根号2n...
已知两个正项数列{An}和{Bn}满足an+bn=n-1求证根号An+1/2+根号bn+1/ 2<=根号2n
展开
2个回答
展开全部
an+bn=n-1
(an+1/2)+(bn+1/2)=n
[√(an+1/2)]^2+[√(bn+1/2)]^2=n
[√(an+1/2)+√(bn+1/2)]^2-2√(an+1/2)√(bn+1/2)=n
[√(an+1/2)+√(bn+1/2)]^2=n+2√(an+1/2)√(bn+1/2)
≤n+[√(an+1/2)]^2+[√(bn+1/2)]^2
=n+(an+1/2)+(bn+1/2)
=n+an+bn+1
=2n
即
[√(an+1/2)+√(bn+1/2)]^2≤2n
所以
√(an+1/2)+√(bn+1/2)≤√(2n)。
(an+1/2)+(bn+1/2)=n
[√(an+1/2)]^2+[√(bn+1/2)]^2=n
[√(an+1/2)+√(bn+1/2)]^2-2√(an+1/2)√(bn+1/2)=n
[√(an+1/2)+√(bn+1/2)]^2=n+2√(an+1/2)√(bn+1/2)
≤n+[√(an+1/2)]^2+[√(bn+1/2)]^2
=n+(an+1/2)+(bn+1/2)
=n+an+bn+1
=2n
即
[√(an+1/2)+√(bn+1/2)]^2≤2n
所以
√(an+1/2)+√(bn+1/2)≤√(2n)。
展开全部
用A[n]表示第n项
A[n]+B[n]=n-1
A[n]+1/2+B[n]+1/2=n①(考虑到A[n]和B[n]为正,用a^2+b^2≥2ab)
n=A[n]+1/2+B[n]+1/2≥2√(A[n]+1/2)√(B[n]+1/2)②
①+②:2n≥A[n]+1/2+B[n]+1/2+2√(A[n]+1/2)√(B[n]+1/2)
=(√(A[n]+1/2)+√(B[n]+1/2))^2
∴√(A[n]+1/2)+√(B[n]+1/2)≤√(2n).
A[n]+B[n]=n-1
A[n]+1/2+B[n]+1/2=n①(考虑到A[n]和B[n]为正,用a^2+b^2≥2ab)
n=A[n]+1/2+B[n]+1/2≥2√(A[n]+1/2)√(B[n]+1/2)②
①+②:2n≥A[n]+1/2+B[n]+1/2+2√(A[n]+1/2)√(B[n]+1/2)
=(√(A[n]+1/2)+√(B[n]+1/2))^2
∴√(A[n]+1/2)+√(B[n]+1/2)≤√(2n).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询