∫√(x²+a²)dx怎么求
1个回答
展开全部
∫√(x^2+a^2)dx
=x√(x^2+a^2) - ∫[ x^2/ √(x^2+a^2) ]dx
=x√(x^2+a^2) - ∫√(x^2+a^2) dx + a^2.∫dx/ √(x^2+a^2)
2∫√(x^2+a^2)dx = x√(x^2+a^2) + a^2.∫dx/ √(x^2+a^2)
∫√(x^2+a^2)dx =(1/2) [ x√(x^2+a^2) + a^2.∫dx/ √(x^2+a^2) ]
=(1/2) [ x√(x^2+a^2) + a^2.ln| √(x^2+a^2) + x | ] + C
consider
let
x=atanu
dx = a(secu)^2 du
∫dx/ √(x^2+a^2)
=∫ secu du
=ln|secu + tanu | + C'
=ln| (1/a)√(x^2+a^2) + x/a | + C'
=ln| √(x^2+a^2) + x | + C''
=x√(x^2+a^2) - ∫[ x^2/ √(x^2+a^2) ]dx
=x√(x^2+a^2) - ∫√(x^2+a^2) dx + a^2.∫dx/ √(x^2+a^2)
2∫√(x^2+a^2)dx = x√(x^2+a^2) + a^2.∫dx/ √(x^2+a^2)
∫√(x^2+a^2)dx =(1/2) [ x√(x^2+a^2) + a^2.∫dx/ √(x^2+a^2) ]
=(1/2) [ x√(x^2+a^2) + a^2.ln| √(x^2+a^2) + x | ] + C
consider
let
x=atanu
dx = a(secu)^2 du
∫dx/ √(x^2+a^2)
=∫ secu du
=ln|secu + tanu | + C'
=ln| (1/a)√(x^2+a^2) + x/a | + C'
=ln| √(x^2+a^2) + x | + C''
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询