高数不定积分求解

 我来答
zhangsonglin_c
高粉答主

2017-03-01 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.7万
采纳率:83%
帮助的人:6954万
展开全部
x²-4≥0,x²≥4,设x=2secu,x²=4sec²u
dx=2secutanudu
sec²u=1+tan²u,sec²u-1=tan²u
换元得:
∫2tanu.2secutanudu
=4∫secutan²udu
=4∫tanudsecu
=4secutanu-4∫secudtanu
=4secutanu-4∫sec³udu
=4secutanu-4∫secu(1+tan²u)du
=4secutanu-4∫secudu-4∫secutan²udu
∫secudu,用万能置换求解,设t=tan(u/2)
cosu=(1-t²)/(1+t²),u/2=arctant,du/2=1/(1+t²)dt,du=2/(1+t²)dt
∫secudu=∫(1+t²)/(1-t²).2/(1+t²)dt
=∫2/[(1-t)(1+t)]dt
=∫[1/(1-t)+1/(1+t)]dt
=-ln|1-t|+ln|1+t|
=ln|(1+t)/(1-t)|=ln|(1+tan(u/2))/(1-tan(u/2))|
4∫secutan²udu=4secutanu-4∫secudu-4∫secutan²udu
2∫secutan²udu=secutanu-∫secudu=secutanu-ln|(1+tan(u/2))/(1-tan(u/2))|
∫secutan²udu=(1/2)[secutanu-ln|(1+tan(u/2))/(1-tan(u/2))|]
secu=x/2,tanu=√(sec²u-1)=√(x²/4-1)
(1+tan(u/2))/(1-tan(u/2))
=[cos(u/2)+sin(u/2)]/[cos(u/2)-sin(u/2)]
=[cos²(u/2)+2sin(u/2)cos(u/2)+sin²(u/2)]/[cos²(u/2)-sin²(u/2)]
=(1+sinu)/cosu
=secu+tanu=x/2+√(x²/4-1)
积分=(1/2)[secutanu-ln|(1+tan(u/2))/(1-tan(u/2))|]+C
=(1/2)[(x/2)√(x²/4-1)-ln|x/2+√(x²/4-1)|]+C
=(1/2)[(x/2)√(x²-4)/2-ln|x/2+√(x²-4)/2|]+C
=(1/8)x√(x²-4)-(1/2)ln|x+√(x²-4)|+(1/2)ln2+C
=(1/8)x√(x²-4)-(1/2)ln|x+√(x²-4)|+D
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式