函数f(x)=cosx+cos(x+兀/3)的对称轴方程为?
2个回答
展开全部
解:
设对称轴为x=a,则f(x+a)=f(x-a)
cos(x+a)+cos(x+a+π/3)=cos(x-a)+cos(x-a+π/3)
cosxcosa-sinxsina+cos(x+π/3)cosa-sin(x+π/3)sina
=cosxcosa+sinxsina+cos(x+π/3)cosa+sin(x+π/3)sina
sinxsina+sin(x+π/3)sina=0
[sinx+sin(x+π/3)]sina=0
sinx+sin(x+π/3)不恒等于0,因此只有sina=0
a=kπ,(k∈Z)
函数f(x)的对称轴方程为:x=kπ,(k∈Z)
设对称轴为x=a,则f(x+a)=f(x-a)
cos(x+a)+cos(x+a+π/3)=cos(x-a)+cos(x-a+π/3)
cosxcosa-sinxsina+cos(x+π/3)cosa-sin(x+π/3)sina
=cosxcosa+sinxsina+cos(x+π/3)cosa+sin(x+π/3)sina
sinxsina+sin(x+π/3)sina=0
[sinx+sin(x+π/3)]sina=0
sinx+sin(x+π/3)不恒等于0,因此只有sina=0
a=kπ,(k∈Z)
函数f(x)的对称轴方程为:x=kπ,(k∈Z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询