高数 定积分问题,求大神详解
1个回答
展开全部
∫[0:1][1/(1+x²)]dx
=arctanx|[0:1]
=arctan1 -arctan0
=π/4 -0
=π/4
令x=sint
x:0→1,则t:0→π/2
∫[0:1]√(1-x²)dx
=∫[0:π/2]√(1-sin²t)d(sint)
=∫[0:π/2]cos²tdt
=¼∫[0:π/2](1+cos2t)d(2t)
=¼(2t+sin2t)|[0:π/2]
=¼[(π+sinπ)-(0+sin0)]
=π/4
原式=(π/4)/(1-π/4)=π/(4-π)
=arctanx|[0:1]
=arctan1 -arctan0
=π/4 -0
=π/4
令x=sint
x:0→1,则t:0→π/2
∫[0:1]√(1-x²)dx
=∫[0:π/2]√(1-sin²t)d(sint)
=∫[0:π/2]cos²tdt
=¼∫[0:π/2](1+cos2t)d(2t)
=¼(2t+sin2t)|[0:π/2]
=¼[(π+sinπ)-(0+sin0)]
=π/4
原式=(π/4)/(1-π/4)=π/(4-π)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询