用洛必达法则求lim x→0 tanx-x /(x-sinx)的极限?(过程)
4个回答
展开全部
0/0型,可以用洛比达法则
分子求导=sec²x-1
分母求导=1-cosx
仍是0/0型,继续用洛比达法则
分子求导=2secx*tanxsecx=2sinx/cos³x
分母求导=sinx
所以原式=lim x→0(2sinx/cos³x)/sinx
=lim x→0(2/cos³x)
=2/1
=2
分子求导=sec²x-1
分母求导=1-cosx
仍是0/0型,继续用洛比达法则
分子求导=2secx*tanxsecx=2sinx/cos³x
分母求导=sinx
所以原式=lim x→0(2sinx/cos³x)/sinx
=lim x→0(2/cos³x)
=2/1
=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tanx-x /(x-sinx)
=(sinx/cosx-x)/(x-sinx)
=(sinx-xcosx)/(xcosx-sinxcosx)
=(sinx-xcosx)/(xcosx-1/2*sin2x)
上下分别取导数,有:
=(cosx-cosx+xsinx)/(cosx-xsinx-cos2x)
=(xsinx)/(cosx-xsinx-cos2x)
上下再分别取导数,有:
=(sinx+xcosx)/(sinx-sinx-xcosx+2sin2x)
=(sinx+xcosx)/(-xcosx+2sin2x)
上下再分别取导数,有:
=(cosx+cosx-xsinx)/(-cosx+xsinx+4cos2x)
=(2cosx-xsinx)/(-cosx+xsinx+4cos2x)
x趋近0的时候,
上式=(2-0)/(-1+0+4)=2/3
=(sinx/cosx-x)/(x-sinx)
=(sinx-xcosx)/(xcosx-sinxcosx)
=(sinx-xcosx)/(xcosx-1/2*sin2x)
上下分别取导数,有:
=(cosx-cosx+xsinx)/(cosx-xsinx-cos2x)
=(xsinx)/(cosx-xsinx-cos2x)
上下再分别取导数,有:
=(sinx+xcosx)/(sinx-sinx-xcosx+2sin2x)
=(sinx+xcosx)/(-xcosx+2sin2x)
上下再分别取导数,有:
=(cosx+cosx-xsinx)/(-cosx+xsinx+4cos2x)
=(2cosx-xsinx)/(-cosx+xsinx+4cos2x)
x趋近0的时候,
上式=(2-0)/(-1+0+4)=2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大一高数。。。忘光了。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询