过抛物线y^2=2px的焦点的一条直线和此抛物线相交于两个点A(x1,y1)B(x2,y2)

求证(1)y1y2=-p^2(2)x1x2=p^2/4(3)|AB|=x1+x2+p过程尽量详细点,谢谢啦... 求证(1)y1y2=-p^2
(2)x1x2=p^2/4
(3)|AB|=x1+x2+p
过程尽量详细点,谢谢啦
展开
我不是他舅
2009-12-25 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.9亿
展开全部
1、
焦点(p/2,0)
若垂直x轴,是x=p/2
则y²=p²
y1=-p,y2=p
y1y2=-p²

若有斜率
y=k(x-p/2)
x=y/k+p/2
所以y²=2py/k+p²
y²-2py/k-p²=0
y1y2=-p²

综上
y1y2=-p²

2、
若垂直x轴,是x=p/2
则x1=x2=p/2
x1x2=p²/4

若有斜率
y=k(x-p/2)=kx-kp/2
所以k²x²-k²xp+k²p²/4=2px
k²x²-(k²p+2p)x+k²p²/4=0
x1x2=(k²p²/4)/k²=p²/4

综上
x1x2=p²/4

3、
由抛物线定义
抛物线上的点到焦点距离等于到准线距离
准线是x=-p/2
所以A到准线距离=x1+p/2
B到准线距离=x2+p/2
所以AB=AF+BF
=A到准线距离+B到准线距离
=x1+p/2+x2+p/2
=x1+x2+p
金龙QSZ
2009-12-25 · TA获得超过8635个赞
知道大有可为答主
回答量:2529
采纳率:100%
帮助的人:2828万
展开全部
证明:设过抛物线y^2=2px的焦点的直线为
y=k(x-p/2)代入y^2=2px
得到k^2x^2-(2p+pk^2)x+k^2p^2/4=0
(2)根据根的判别式(韦达定理)
x1x2=(k^2p^2/4)/k^2=p^2/4
(1)(y1y2)^2= 2px12px2
=4p^2*p^2/4=p^4
因为y1,y2符号相反
所以y1y2=-p^2
(3)|AB|^2=(x1-x2)^2+(y1-y2)^2
=(x1+x2)^2-4x1x2+(y1-y2)^2
=[(2p+pk^2)/2k^2]^2-p^2+2p(x1+x2)-2y1y2
==[(2p+pk^2)/2k^2]^2-p^2+2p(2p+pk^2)/2k^2
+2p^2
=(x1+x2+p)^2
故|AB|=x1+x2+p
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式