求解数学题 要带过程

 我来答
ys...x@163.com
2017-05-26 · TA获得超过129个赞
知道小有建树答主
回答量:666
采纳率:0%
帮助的人:132万
展开全部
解答:
x^2-mlnx-x^2+x=x-mlnx≥0(x>1),
x≥mlnx,m≤x/lnx,令g(x)=x/lnx,g'(x)=
(lnx-x*1/x)/(lnx)^2=(lnx-1)/(lnx)^2,取g'(x)=0,解得lnx=1,x=e,
因为g(x)在x∈(1,e)上单调递减,在x∈(e,+∞)上单调递增,
所以在x=e处取得最小值,gmin(x)=g(e)=e,
所以有m≤e;
(2)
k(x)=-2lnx+x-a=0,设两零点为x1≥1,x2≤3,a=-2lnx1+x1=-2lnx2+x2;
设g(x1)=-2lnx1+x1,y(x2)=-2lnx2+x2,
g'(x1)=-2/x1+1,(x1≥1),得g(x1)≥g(2)=-2ln2+2;
y'(x2)=-2/x2+1,(x2≤3),得y(x2)≤y(3)=-2ln3+3;
所以有-2ln2+2≤a≤-2ln3+3
(3)
f'(x)=2x-m/x,
h'(x)=2x-1,
取f'(x)=0,得m=2x^2;x=√m/2,
取h'(x)=0,得x=1/2,
要满足f(x)和h(x)在公共定义域上具有相同的单调性,
√m/2=1/2,所以m=1/2
f(x)的一阶导数f'(x)=-2*(2x^2 - tx -2)/(x^2 + 1)^2
f'(x)的分母恒大于0,分子为正的部分正好是【α、β】。
所以f'(x)在区间【α、β】上恒大于0
所以f(x)在区间【α、β】上单调递增
所以A=f(β)=(4β-t)/(β^2 +1),B=f(α)=(4α-t)/(α^2 +1)
g(t)=A-B=[4αβ(α-β)-4(α-β)-t(α-β)(α+β)]/(α^2β^2+α^2+β^2+1)
因为α、β是方程的两个根,所以α+β=t/2,α*β=-1
α-β=-sqrt(α^2 + β^2 -2αβ)=-sqrt[(α+β)^2-4αβ]=-[sqrt(t^2+16)]/2
带入g(t)=sqrt(t^2 +16)
又因为方程有两个实根,所以delt=t^2 +16 恒大于0
所以g(t)最小值为t=0时g(0)=4
神州的兰天
2017-05-26 · TA获得超过5566个赞
知道大有可为答主
回答量:3444
采纳率:86%
帮助的人:1140万
展开全部
你的题目是抄错 ,(2a+b)^2016必定要用特殊算法,
第一个方程应该=-6
则用⑴,⑶联立解得x=2,y=-2,
把x=2,y=-2,代入⑶.⑷再联立解得a=1,b=-3
(2a+b)^2016=(-1)^2016=1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-05-26
展开全部
先确定有没有抄错吧,上面是bx-ay,下面是bx+ay
更多追问追答
追问

不错呀
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jsweeting
2017-05-26 · TA获得超过218个赞
知道小有建树答主
回答量:252
采纳率:0%
帮助的人:81.6万
展开全部
确定这数写得是对的吗?
追问
应该是对的

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式