高数 例15 请问划线部分的特解怎么算? 20

 我来答
最爱方法水电费cz
2017-10-16 · TA获得超过1277个赞
知道小有建树答主
回答量:1594
采纳率:28%
帮助的人:99.2万
展开全部
因为x是单调递增,证明如下:对于任意一个Xn是小于2的(利用归纳法,不要说不知道归纳法都不会哦),对于Xn+1=(2Xn)^1/2>(Xn*Xn)^1/2>Xn,如此证明了数列的单调性.
然后说明有界,且有上界(上界是2),很简单,还是利用归纳法.
然后根据极限的定义limXn=A,则lim(2Xn)^(1/2)=limXn,对两边求极限知道,(2A)^(1/2)=A;知道A=2,所以极限是2 .
其实还可以这样做:
可以将Xn化成指数形式,Xn=(2)^(1/2)*(1/2)^(1/4)*...(1/2)^(1/2^n)=(2)^(1/2+1/4+...+1/2^n)=)=(2)^(1-1/2^n),两边求极限就可以的到它的极限了.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式