幂函数和指数函数有什么区别

 我来答
热点那些事儿
高粉答主

2020-12-19 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:200万
展开全部

一、定义不同,从两者的数学表达式来看,两者的未知量X的位置刚好互换。

指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.

幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。

二、性质不同

1、幂函数:

2、指数函数:

扩展资料

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】 

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

AlCuAuCl
2017-05-11 · TA获得超过198个赞
知道答主
回答量:38
采纳率:0%
帮助的人:30.2万
展开全部
一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
一般地,形如y=x^a(a为有理数)的函数,即以底数为自变量,指数为常数的函数称为幂函数。也是初等函数中的一种。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
婉丽还如意的银杏v
2017-05-11 · TA获得超过4218个赞
知道大有可为答主
回答量:2838
采纳率:86%
帮助的人:386万
展开全部
比如说,y等于a的b次方。如果a是自变量,即f(x)=x^b,这是幂函数;如果b是自变量,即f(x)=a^x,这是一个指数函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式