5个回答
展开全部
let
z=(1-i)/(1+i)
=(2-2i)/2
= 1- i
|z| = √2
argz = arctan(-1/1)= -π/4
[(1-i)/(1+i)]^2017
={√2[cos(-π/4) +isin(-π/4) ]}^2017
=2^(2017/2) . [cos(-2017π/4) +isin(-2017π/4) ]
=2^(2017/2) . [cos(-π/4) +isin(-π/4) ]
=2^(2017/2) . [(√2/2) -i(sin(√2/2)) ]
=2^1008 . (1 - i)
z=(1-i)/(1+i)
=(2-2i)/2
= 1- i
|z| = √2
argz = arctan(-1/1)= -π/4
[(1-i)/(1+i)]^2017
={√2[cos(-π/4) +isin(-π/4) ]}^2017
=2^(2017/2) . [cos(-2017π/4) +isin(-2017π/4) ]
=2^(2017/2) . [cos(-π/4) +isin(-π/4) ]
=2^(2017/2) . [(√2/2) -i(sin(√2/2)) ]
=2^1008 . (1 - i)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
给你个思路,把2017换成0,1,2,3算这四个数,你会发现结果是一个循环,然后循环到2017会算了吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询