高中数学!!求解过程
1个回答
展开全部
(1)
f(x)=sin²(ωx)+√3sin(ωx)sin(ωx+π/2)
= ½(1-cos2ωx)+√3sin(ωx)cos(ωx)
=½(1-cos2ωx)+(√3/2)sin2ωx
=(√3/2)sin2ωx-½cos2ωx+½
=sin(2ωx- π/6)+½
最小正周期T=2π/(2ω)=π
ω=1
(2)
f(x)=sin(2x- π/6)+½
x∈[0,2π/3]
π/6≤2x- π/6≤3π/2
-1≤sin(2x- π/6)≤1
-½≤sin(2ωx- π/6)+½≤3/2
f(x)的取值范围为[-½,3/2]
f(x)=sin²(ωx)+√3sin(ωx)sin(ωx+π/2)
= ½(1-cos2ωx)+√3sin(ωx)cos(ωx)
=½(1-cos2ωx)+(√3/2)sin2ωx
=(√3/2)sin2ωx-½cos2ωx+½
=sin(2ωx- π/6)+½
最小正周期T=2π/(2ω)=π
ω=1
(2)
f(x)=sin(2x- π/6)+½
x∈[0,2π/3]
π/6≤2x- π/6≤3π/2
-1≤sin(2x- π/6)≤1
-½≤sin(2ωx- π/6)+½≤3/2
f(x)的取值范围为[-½,3/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询