椭圆的法线方程的意义, 它为什么是这样的 谢谢
椭圆的切线方程的斜率为y’,则法线的斜率为-1/y’。法线方程可以写成Y-y=-1/y’(X-x)。由隐函数存在定理可得y’=-F’x/F’y (详情见高数18讲最新版第181页最下面)。代入并整理就可以得到答案。
扩展资料:
法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。
曲线在点(x0,y0)的法线方程 , ;平面内与两定点 、 的距离的和等于常数 ( )的动点P的轨迹叫做椭圆。
即: 其中两定点 、 叫做椭圆的焦点,两焦点的距离 叫做椭圆的焦距。
为椭圆的动点。椭圆截与两焦点连线重合的直线所得的弦为长轴,长为 。椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为 。 可变为。
在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。
参考资料:百度百科-椭圆
椭圆的切线方程的斜率为y’,则法线的斜率为-1/y’。法线方程可以写成Y-y=-1/y’(X-x)。由隐函数存在定理可得y’=-F’x/F’y 。
法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。
曲线在点(x0,y0)的法线方程
扩展材料
法线方程:法线斜率与切线斜率乘积为-1
对于直线,法线是它的垂线;对于一般的平面曲线,法线就是切线的垂线;对于空间图形,是垂直平面。
法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。