两角和与差的三角函数公式是什么?
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
三角函数本质:根据三角函数定义推导公式根据下图,有sinθ=y/ r; cosθ=x/r;tanθ=y/x; cotθ=x/y。
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R。其中,R为△ABC的外接圆的半径。
余弦定理:在△ABC中,b^2 = a^2 + c^2 - 2ac·cos θ。其中,θ为边a与边c的夹角。
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
你也可以只需证明cos(A+B) = cosAcosB-sinAsinB,其余都是在此基础上推出的.
cos(A+B) = cosAcosB-sinAsinB 可用相似三角比证明.