1个回答
展开全部
=arctanf(0-) -arctanf(-1)
而f(0-)=
lim(x→0)(x+1)^2(x-1)/(x^3(x-2))
=lim(x→0)(x^3+x^2-x-1)/(x^4-2x^3))
带入x=0-.
原式=-1/0 =-∞
则arctanf(0-)=-π/2
同理:f(-1)=
lim(x→0)(x+1)^2(x-1)/(x^3(x-2))
=lim(x→0)(x^3+x^2-x-1)/(x^4-2x^3))
带入x=-1.
原式=0/3 =0
则:arctanf(-1)=0
所以:arctanf(0-) -arctanf(-1)=-π/2
而f(0-)=
lim(x→0)(x+1)^2(x-1)/(x^3(x-2))
=lim(x→0)(x^3+x^2-x-1)/(x^4-2x^3))
带入x=0-.
原式=-1/0 =-∞
则arctanf(0-)=-π/2
同理:f(-1)=
lim(x→0)(x+1)^2(x-1)/(x^3(x-2))
=lim(x→0)(x^3+x^2-x-1)/(x^4-2x^3))
带入x=-1.
原式=0/3 =0
则:arctanf(-1)=0
所以:arctanf(0-) -arctanf(-1)=-π/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询