高数题选择题

为什么是连续呢,为什么不是可微的... 为什么是连续呢,为什么不是可微的 展开
 我来答
数码答疑

2018-07-12 · 解答日常生活中的数码问题
数码答疑
采纳数:8804 获赞数:18620

向TA提问 私信TA
展开全部
因为x^2+y^2>0才才有意义,一边导数不存在
瑞达小美
2024-11-27 广告
1. 选择适合自己的题 。课程针对应试,精准学习。导学、精讲、真金题、冲刺各阶段相辅相成,直击考点。瑞达法考APP一站式学习,碎片时间也能充分利用。2016年瑞达教育正式成立,总部位于北京市,在北京、天津、上海、广州、深圳、南京、杭州、海口... 点击进入详情页
本回答由瑞达小美提供
神勇且恬然丶仙人掌F
2018-07-12 · 超过37用户采纳过TA的回答
知道答主
回答量:71
采纳率:85%
帮助的人:11.8万
展开全部
解:1、
Y=X-3
当Y=0时,X=3,则点A(3,0)
当X=0时,Y=-3,则点B(0,-3)
2、
Y=X2+BX+C
当过点A(3,0)时
9+3B+C=0 1)
过点B(0,-3)时
C=-3 2)
把2)代入1)中,得
9+3B-3=0
B=-2
则二次函数的关系式Y=X2-2X-3
Y=X2-2X-3
=(X-1)2-4
顶点(1,-4)
当X=1时,Y最小值Y=-4
(3)当t属于[1/2,2],g(t)在[1/2,2/3]递减,[2/3,2]递增
g(t)最大值为g(2)=1
f(s)>=1在[1/2,2]上恒成立
a/x+xlnx>=1
a>=x-x^2lnx
令h(x)=x-x^2lnx
h`(x)=1-2xlnx-x
令h`(x)=0,x=1
h(x)在[1/2,1]递增,[1,2]递减
h(x)最大为h(1)=1
∴a>=1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式