高数 二重积分
2018-05-31
展开全部
Z=x^2+2y^2是个扁的旋转抛物面,开口向上,你可以根据方程的性质来想象他的图像,
Z=x^2+2y^2当x=0时,z=2y^2,说明图形在yOz平面上是条抛物线,令y=0可以看出图像在xOz平面也是一条抛物线。而在同一高度平面上(如令z=k),x^2+2y^2=k是个椭圆,可以看出图形是个扁的旋转抛物面。
同样Z=6-2x^2-y^2是一个开口向下的旋转抛物面,可以算出两个物体的交线在xOy平面上的投影x^2+2y^2=6-2x^2-y^2,
也即x^2+y^2=2,是个圆。
∫∫(D) [(6-2x^2-y^2)-(x^2+2y^2)]dxdy就是用二重积分求体积了,积分区域D是x^2+y^2=2
Z=x^2+2y^2当x=0时,z=2y^2,说明图形在yOz平面上是条抛物线,令y=0可以看出图像在xOz平面也是一条抛物线。而在同一高度平面上(如令z=k),x^2+2y^2=k是个椭圆,可以看出图形是个扁的旋转抛物面。
同样Z=6-2x^2-y^2是一个开口向下的旋转抛物面,可以算出两个物体的交线在xOy平面上的投影x^2+2y^2=6-2x^2-y^2,
也即x^2+y^2=2,是个圆。
∫∫(D) [(6-2x^2-y^2)-(x^2+2y^2)]dxdy就是用二重积分求体积了,积分区域D是x^2+y^2=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询