简单点说,换元法就用一个字母符号代表一堆复杂的东西,计算起来比较省力。
换元法是数学学习中的一种常见方法。
对结构比较复杂的多项式,把其中某些部分看成一个整体,用新字母代替,从而将复杂的式子化繁为简。
举个简单的例子。
【例1】计算3+9+27+81+243+729+2187
分析:这题是等比数列求和,公比是3,共有7项。采用错位相减法,让等式乘以它的公比。
令A=3+9+27+81+243+729+2187;
则 3A=9+27+81+243+729+2187+6561;
两式相减,
3A-A=2A=6561-3
2A=6558
A=6558÷2=3279
所以,
3+9+27+81+243+729+2187=3279
在计算【例1】中,
G老师令A=3+9+27+81+243+729+2187;
这一步,
就叫做换元。
用字母A代表3+9+27+81+243+729+2187的和。
当然,
也可以不用A,
用B、C、D、E、F、G……都行,
喜欢哪个字母就用哪个。
注意:用换元法解答,在解题的最后一定要记得把元还回来,就像G老师在【例1】中写的最后一步“所以,3+9+27+81+243+729+2187=3279”。
已知f(x-1)=x²-3x+2,求f(x+1)的解析式
如果采用换元法,则有x-1=t,即x=t+1
于是f(t)=(t+1)²-3(t+1)+2
接下来为什么要把函数解析式化成f(t)=t²-t——化成一元二次函数的标准形at^2+bt+c,简单且与习惯表示方式相符。
那么又为什么可以得出f(x)=x²-x——函数中的对应关系其实与自变量所用的字母无关。
因习惯上用x表示自变量,y代表因变量,所以把t换成通常的自变量x了。
在求反函数时,先解出x=h(y), 然后x, y互换,就是这个道理。
又为什么可以得出f(x+1)=(x+1)²-(x+1)=x²+x——你也可以使用关系式 f(t)=t²-t,然后令 t=x+1, 得f(x+1)=(x+1)²-(x+1)=x²+x。这样或许更好理解一些。
解一些复杂的 因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少 多项式项数,降低多项式结构复杂程度等方面有独到作用。
换元法又称变量替换法 , 是我们解题常用的方法之一 。利用换元法 , 可以化繁为简 , 化难为易 , 从而找到解题的捷径 。
换元法是指引入一个或几个新的变量代替原来的某些变量(或代数式),对新的变量求出结果之后,返回去求原变量的结果.换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题.其理论根据是等量代换.
高中数学中换元法主要有以下两类:
(1)整体换元:以“元”换“式”。
(2)三角换元 ,以“式”换“元”。
(3)此外,还有对称换元、均值换元、万能换元等.换元法应用比较广泛。如解方程,解不等式,证明不等式,求函数的值域,求数列的通项与和等,另外在解析几何中也有广泛的应用。
整体换元
又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如 解不等式:4^x +2^x -2≥0,先变形为2^2x,设2^x =t(t>0),从而变为熟悉的 一元二次不等式求解和指数方程的问题。
三角换元
应用于去根号,或者变换为三角形式易求时,主要利用已知 代数式中与三角知识中有某点联系进行换元。如求函数y=√1-x^2的 值域时,若x∈[-1,1],设x=sin α ,sinα∈[-1,1 ],问题变成了熟悉的求 三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x^2+y^2 =r^2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。
均值换元
如遇到x+y=2S形式时,设x= S+t,y= S-t等等。
例如清华大学自主招生考试题,已知a,b为非 负实数,M=a^4+b^4,a+b=1,求M的最值
可令a=1/2-t,b=1/2+t(0≤t≤1/2),带入M,M=2×(t^2+3/4)^2-1,由二次函数性质知M(min)=1/8,M(max)=1.
等量换元
设 x+y=3
x=t+2,y=v-3 ,多在 二重积分中用到。
非等量换元
设 u=(x+y)+3(x+y)
设x+y=S,也叫 整体换元法。