初中数学题,不难

如图,半径为5AP=4,AB垂直于CD于O求四边形OCPA的面积... 如图,半径为5 AP=4,AB垂直于CD于O 求四边形OCPA的面积 展开
 我来答
nbdxxy
2020-07-22 · TA获得超过118个赞
知道答主
回答量:90
采纳率:100%
帮助的人:11.1万
展开全部

首先,补充一下题目,O为圆心(以下解题思路都是需要O为圆心这个条件)

先连接OP,然后过P分别做AO,CO的垂线,分别交AO于M,CO与N

这时你会发现四边形OCPA被分为2个三角形,AOP和COP,

S三角形AOP=AO*PM*1/2=5*PM*1/2

S三角形COP=CO*PN*1/2=5*PN*1/2

S四边形OCPA=5*1/2*(PM+PN)

为方便计算设 PM=x,PN=y

因为AB垂直CD,PM垂直AB,PN垂直PN,所以四边形PMON是长方形,所以MO=PN=y

因为PO=5,所以x^2+y^2=25

因为AO=5,MO=y,所以AM=(5-y)

因为AP=4,所以通过直角三角形APM可以得到 x^2+(5-y)^2=16

结合上面的式子x^2+y^2=25,可以计算出y=3.4=17/5

同样可以推算出x=5分之4根号21=(4/5)*(21^(1/2)) (这里只是表述方式的问题21的1/2次就是根号21)

根据S四边形OCPA=5*1/2*(PM+PN)=5*1/2*((4/5)*(21^(1/2))+17/5)=2*(21^(1/2))+17/2

百度网友58c762b7
2019-10-22
知道答主
回答量:13
采纳率:0%
帮助的人:1.2万
展开全部

首先,要了解两个内容:

1、相似三角形的判定定理:两角对应相等,两个三角形相似。

2、相似三角形的性质:相似三角形对应角相等,对应边成正比例。

解题示意图

过P点向OA做垂直辅助线,两个直角三角形△APE和△APB共用∠A;

利用三角形相似的判定定理,可推出△APE≌△APB;

由此可推出:AP/AE=AB/AP=PB/PE

由半径为5,AB=10 ;

再由AP=4,可得出AE=1.6  ,PE=3.7

由矩形OEPF,可得出OE=PF=5-1.6=3.4

所以四边形OAPC的面积=△OAP的面积+△OPC的面积=35.5

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
卓越初中数学
2021-05-13 · 尽我所能,帮你所需。
卓越初中数学
采纳数:696 获赞数:2300

向TA提问 私信TA
展开全部

做辅助线,PE⊥AB交AB于点E,利用三角形相似求得AE、OE、PE的值,把四边形OCPA拆分成一个梯形PEOC和一个直角三角形APE,再进行面积计算,具体过程如下图所示。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冯成成在上海滩
2023-06-26 · 冯成成在上海滩没有许文强
冯成成在上海滩
采纳数:63 获赞数:41

向TA提问 私信TA
展开全部
根据题目给出的信息,半径为 5 的圆的中心为 O,AB 垂直于 CD,AP = 4。
首先,我们可以得出 OC 的长度为半径的长度,即 OC = 5。
接下来,我们需要确定 CP 的长度。根据圆的性质,半径 OC 和弦 AB 垂直,所以弦的中点 P 位于半径 OC 上。
由于 AP = 4,所以 PC = OC - AP = 5 - 4 = 1。
现在,我们可以计算四边形 OCPA 的面积。它可以分为两个三角形,即三角形 OCP 和三角形 OPA。
首先,计算三角形 OCP 的面积。由于 OC = 5,PC = 1,三角形 OCP 的底边长度为 5,高度为 1。因此,三角形 OCP 的面积为 (1/2) * 5 * 1 = 2.5。
接下来,计算三角形 OPA 的面积。由于 OC = 5,AP = 4,三角形 OPA 的底边长度为 5,高度为 4。因此,三角形 OPA 的面积为 (1/2) * 5 * 4 = 10。
最后,将两个三角形的面积相加,得到四边形 OCPA 的面积:
面积 = 2.5 + 10 = 12.5
因此,四边形 OCPA 的面积为 12.5 平方单位。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
虚怀若谷举手之劳

2019-10-27 · 用我一份热,耀出千分光
虚怀若谷举手之劳
采纳数:1463 获赞数:5079

向TA提问 私信TA
展开全部
度友这个可以做出来的。
由于画图麻烦,所以只能文字描述了。
第一步:连接op连点,那么四边形OCPA的面积就等于三角形AOP和三角形COP面积之和。
第二步:在三角形AOP之中,AO=PO=r=5,AP=4,用三角函数就可以求出 角AOP的正弦值和余弦值,就可以求出三角形AOP的面积了,AO*OP*sin角aop* 1/2,
同理可以求出三角形COP的面积,
所以就可求出四边形的面积了!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(54)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式