求不定积分∫ 1/(1+x^2)(1+x^2018)dx?

 我来答
简单生活Eyv
2021-08-17 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:24.1万
展开全部

∫1/(1+x^2)dx

=arctanx+C

∫x/(1+x^2)dx

=(1/2)∫1/(1+x²)d(1+x²)

=(1/2)ln(1+x²)+C

不定积分性质

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

茹翊神谕者

2021-05-17 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1550万
展开全部

令α=2018就行,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2020-12-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:730万
展开全部

∫1/(1+x^2)dx

=arctanx+C

∫x/(1+x^2)dx

=(1/2)∫1/(1+x²)d(1+x²)

=(1/2)ln(1+x²)+C

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数学刘哥
2019-12-06 · 知道合伙人教育行家
数学刘哥
知道合伙人教育行家
采纳数:2342 获赞数:7192
乙等奖学金,本科高数上97高数下95,应用数学考研专业第二

向TA提问 私信TA
展开全部
这种是有理分式的不定积分,首先要对有理分式进行变形,变成部分分式的和,一般用待定系数法或者观察变形发,变形后分别对每个部分求不定积分即可,这道题有点特别,等我白天有时间用纸笔写一下
追问
嗯嗯
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
A暮尘
2019-12-07 · 超过40用户采纳过TA的回答
知道答主
回答量:273
采纳率:37%
帮助的人:59.7万
展开全部
数学竞赛题?你可以看下十一届数学专业组初赛题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式