平面直角坐标系中某个点不存在哪个象限的问题有几种解法?(除了把它的坐标带进去)求过程! 5
1个回答
展开全部
1. 平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).
要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.
2. 点的坐标
平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.
要点诠释:
(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.
(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.
(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.
要点三、坐标平面
1. 象限
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.
要点诠释:
(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.
(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.
2. 坐标平面的结构
坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
要点四、点坐标的特征
1.各个象限内和坐标轴上点的坐标符号规律
要点诠释:
(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.
(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.
(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.
2.象限的角平分线上点坐标的特征
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).
要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.
2. 点的坐标
平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.
要点诠释:
(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.
(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.
(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.
要点三、坐标平面
1. 象限
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.
要点诠释:
(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.
(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.
2. 坐标平面的结构
坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
要点四、点坐标的特征
1.各个象限内和坐标轴上点的坐标符号规律
要点诠释:
(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.
(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.
(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.
2.象限的角平分线上点坐标的特征
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询