组合及计算公式为:c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m)
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。
扩展资料:
其他排列与组合公式介绍:
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r),n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为n!/(n1!*n2!*……*nk!)。
而k类元素来说,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m),排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n。
组合(Cnm(n为下标,m为上标)),Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。
参考资料: 如果您的回答是从其他地方引用,请表明出处
这个问题看似简单实际上很难得到正确结果,就是用通用的编程方法也难求出结果(因为可能性实在是太多了)。我通过仔细分析,找到了154个满足要求的6个数组合,虽然还不能严格证明这是最少的,但我估计最少数和154相差不会很多,说不定就是154。
希望看到本题目的
高手
能打破我的
记录
。
154个满足要求的6个数组合如下所示:
1)
01
02
03
04
05
06
2)
06
07
08
09
10
11
3)
01
07
08
09
10
11
4)
02
07
08
09
10
11
5)
03
07
08
09
10
11
6)
04
07
08
09
10
11
7)
05
07
08
09
10
11
8)
01
02
03
04
05
07
9)
01
02
03
04
05
08
10)
01
02
03
04
05
09
11)
01
02
03
04
05
10
12)
01
02
03
04
05
11
13)
01
02
03
07
08
09
14)
01
02
03
09
10
11
15)
01
02
03
07
08
10
16)
01
02
03
07
08
11
17)
01
02
04
07
08
09
18)
01
02
04
09
10
11
19)
01
02
04
07
08
10
20)
01
02
04
07
08
11
21)
01
02
05
07
08
09
22)
01
02
05
09
10
11
23)
01
02
05
07
08
10
24)
01
02
05
07
08
11
25)
01
03
04
07
08
09
26)
01
03
04
09
10
11
27)
01
03
04
07
08
10
28)
01
03
04
07
08
11
29)
01
03
05
07
08
09
30)
01
03
05
09
10
11
31)
01
03
05
07
08
10
32)
01
03
05
07
08
11
33)
01
04
05
07
08
09
34)
01
04
05
09
10
11
35)
01
04
05
07
08
10
36)
01
04
05
07
08
11
37)
02
03
04
07
08
09
38)
02
03
04
09
10
11
39)
02
03
04
07
08
10
40)
02
03
04
07
08
11
41)
02
03
05
07
08
09
42)
02
03
05
09
10
11
43)
02
03
05
07
08
10
44)
02
03
05
07
08
11
45)
02
04
05
07
08
09
46)
02
04
05
09
10
11
47)
02
04
05
07
08
10
48)
02
04
05
07
08
11
49)
03
04
05
07
08
09
50)
03
04
05
09
10
11
51)
03
04
05
07
08
10
52)
03
04
05
07
08
11
53)
01
02
03
07
09
10
54)
01
02
03
07
09
11
55)
01
02
03
07
10
11
56)
01
02
03
08
09
10
57)
01
02
03
08
09
11
58)
01
02
03
08
10
11
59)
03
04
05
07
09
10
60)
03
04
05
07
09
11
61)
03
04
05
07
10
11
62)
03
04
05
08
09
10
63)
03
04
05
08
09
11
64)
03
04
05
08
10
11
65)
01
02
04
07
09
10
66)
01
02
04
07
09
11
67)
01
02
04
07
10
11
68)
01
02
04
08
09
10
69)
01
02
04
08
09
11
70)
01
02
04
08
10
11
71)
01
02
05
07
09
10
72)
01
02
05
07
09
11
73)
01
02
05
07
10
11
74)
01
02
05
08
09
10
75)
01
02
05
08
09
11
76)
01
02
05
08
10
11
77)
01
06
07
08
09
10
78)
01
06
08
09
10
11
79)
01
06
07
08
09
11
80)
01
06
07
08
10
11
81)
02
06
07
08
09
10
82)
02
06
08
09
10
11
83)
02
06
07
08
09
11
84)
02
06
07
08
10
11
85)
03
06
07
08
09
10
86)
03
06
08
09
10
11
87)
03
06
07
08
09
11
88)
03
06
07
08
10
11
89)
04
06
07
08
09
10
90)
04
06
08
09
10
11
91)
04
06
07
08
09
11
92)
04
06
07
08
10
11
93)
05
06
07
08
09
10
94)
05
06
08
09
10
11
95)
05
06
07
08
09
11
96)
05
06
07
08
10
11
97)
01
02
03
06
07
08
98)
01
02
03
06
07
09
99)
01
02
03
06
07
10
100)
01
02
03
06
07
11
101)
01
02
03
06
08
09
102)
01
02
03
06
08
10
103)
01
02
03
06
08
11
104)
01
02
03
06
09
10
105)
01
02
03
06
09
11
106)
01
02
03
06
10
11
107)
03
04
05
06
07
08
108)
03
04
05
06
07
09
109)
03
04
05
06
07
10
110)
03
04
05
06
07
11
111)
03
04
05
06
08
09
112)
03
04
05
06
08
10
113)
03
04
05
06
08
11
114)
03
04
05
06
09
10
115)
03
04
05
06
09
11
116)
03
04
05
06
10
11
117)
01
02
04
06
07
08
118)
01
02
04
06
07
09
119)
01
02
04
06
07
10
120)
01
02
04
06
07
11
121)
01
02
04
06
08
09
122)
01
02
04
06
08
10
123)
01
02
04
06
08
11
124)
01
02
04
06
09
10
125)
01
02
04
06
09
11
126)
01
02
04
06
10
11
127)
01
02
05
06
07
08
128)
01
02
05
06
07
09
129)
01
02
05
06
07
10
130)
01
02
05
06
07
11
131)
01
02
05
06
08
09
132)
01
02
05
06
08
10
133)
01
02
05
06
08
11
134)
01
02
05
06
09
10
135)
01
02
05
06
09
11
136)
01
02
05
06
10
11
137)
01
03
04
06
07
08
138)
01
03
04
06
09
10
139)
01
03
04
06
07
11
140)
01
03
05
06
07
08
141)
01
03
05
06
09
10
142)
01
03
05
06
07
11
143)
01
04
05
06
07
08
144)
01
04
05
06
09
10
145)
01
04
05
06
07
11
146)
02
03
04
06
07
08
147)
02
03
04
06
09
10
148)
02
03
04
06
07
11
149)
02
03
05
06
07
08
150)
02
03
05
06
09
10
151)
02
03
05
06
07
11
152)
02
04
05
06
07
08
153)
02
04
05
06
09
10
154)
02
04
05
06
07
11