13-2=16
2-16+6=-8
16-(-8)+7=31
-8-31+8=-31
例如:
奇数项=13+5(n-1)/2;偶数项为60-15/(n/2-1)
因此,第7项(奇数项)=13+5(7-1)/2=13+15=28
第8项(偶数项)=60-15(8/2-1)=60-45=15
以此类推,第9项(奇数项)=13+5×(9-1)/2=13+20=33
第10项(偶数项)=60-15(10/2-1)=60-60=0
扩展资料:
找规律填空的意义,实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),
以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式,然后再用数学归纳法或反证法或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。所以找规律填空还是有助于我们增强解一些有难度又有特点的数列的。
参考资料来源:百度百科-找规律
规律如下:
一、13-2+5=16
二、2-16+6=-8
三、16-(-8)+7=31
四、-8-31+8=-31
找规律填空的意义
实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式。
然后再用数学归纳法或反证法或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。所以找规律填空还是有助于我们增强解一些有难度又有特点的数列的。
规律如下:
13-2+5=16,
2-16+6=-8,
16-(-8)+7=31,
-8-31+8=-31。
扩展资料
找规律填空的意义,实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式,
然后再用数学归纳法或反证法或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。所以找规律填空还是有助于我们增强解一些有难度又有特点的数列的。