若π/4< a<3π/4, cos[(π/4)+ a]=3/5,问: sin[(π/4)+ a]的?
∵π/4<a<3π/4∴-π/2<(π/4)-a<0sin[(π/4)-a]=√ ̄1-cos²[(π/4)-a]sin[(π/4)-a]=-4/5但是cos[(...
∵π/4<a<3π/4
∴ -π/2<(π/4)-a<0
sin[(π/4)-a]=√ ̄1-cos²[(π/4)-a]
sin[(π/4)-a]=-4/5
但是 cos[(π/4)-a]=sin[(π/4)+a]=3/5 同理 sin[(π/4)-a]=cos[(π/4)+a]=-4/5
而(π/4)+a是第一象限角,cos[(π/4)+a]会>0,和上面矛盾了… 展开
∴ -π/2<(π/4)-a<0
sin[(π/4)-a]=√ ̄1-cos²[(π/4)-a]
sin[(π/4)-a]=-4/5
但是 cos[(π/4)-a]=sin[(π/4)+a]=3/5 同理 sin[(π/4)-a]=cos[(π/4)+a]=-4/5
而(π/4)+a是第一象限角,cos[(π/4)+a]会>0,和上面矛盾了… 展开
展开全部
π/4<a<3π/4, -π/2<π/4-a<0
cos(π/4-a)=3/5,sin(π/4-a)=-4/5
因为sin2a=cos(π/2-2a)=cos²(π/4-a)-sin²(π/4-a)=-7/25<0
所以π<2a<3π/2,π/2<a<3π/4
cos2a=sin(π/2-2a)=2*cos(π/4-a)sin(π/4-a)=-24/25
sina=7/5根号2,cosa=-1/5根号2
0<b<π/4,0<π/4-b<π/4
sin(3π/4+b)=5/13,sin(π/4-b)=5/13,cos(π/4-b)=12/13
cos2b=sin(π/2-2b)=2*cos(π/4-b)sin(π/4-b)=120/169
sinb=7/13根号2,cosb=17/13根号2
sin(a+b)=sina*cosb+sinb*cosa
=7/5根号2*17/13根号2+7/13根号2(-1/5根号2)=56/65
cos(π/4-a)=3/5,sin(π/4-a)=-4/5
因为sin2a=cos(π/2-2a)=cos²(π/4-a)-sin²(π/4-a)=-7/25<0
所以π<2a<3π/2,π/2<a<3π/4
cos2a=sin(π/2-2a)=2*cos(π/4-a)sin(π/4-a)=-24/25
sina=7/5根号2,cosa=-1/5根号2
0<b<π/4,0<π/4-b<π/4
sin(3π/4+b)=5/13,sin(π/4-b)=5/13,cos(π/4-b)=12/13
cos2b=sin(π/2-2b)=2*cos(π/4-b)sin(π/4-b)=120/169
sinb=7/13根号2,cosb=17/13根号2
sin(a+b)=sina*cosb+sinb*cosa
=7/5根号2*17/13根号2+7/13根号2(-1/5根号2)=56/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询