(高中数学)(导数)如图,请按照我的思路接着写下去

 我来答
hbc3193034
2019-06-29 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
f(x)=[|x^2-ex|-lnx]/x^2,
x>=e时f(x)=(x^2-ex-lnx)/x^2,
f'(x)=(2x-e-1/x)/x^2-2(x^2-ex-lnx)/x^3
=(ex-1+2lnx)/x^3>0,
所以f(x)是增函数;
0<x<e时f(x)=(ex-x^2-lnx)/x^2=(ex-lnx)/x^2-1,
f'(x)=(e-1/x)/x^2-2(ex-lnx)/x^3
=(-ex-1+2lnx)/x^3<0,
所以f(x)是减函数。
追问
谢谢你!
但是f(x)你看错了 分母是x 不是x^2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
qustliumeng
2019-06-29 · TA获得超过372个赞
知道小有建树答主
回答量:560
采纳率:55%
帮助的人:191万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2019-06-29 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8114万
展开全部
定义域 x > 0.
当 0 < x < e 时, f(x) = e - x - lnx/x,
f'(x) = -1 - (1-lnx)/x^2 = - (1+x^2-lnx)/x^2 < 0, 函数单调减少;
当 x ≥ e 时, f(x) = x - e - lnx/x,
f'(x) = 1 - (1-lnx)/x^2 = - (1-x^2-lnx)/x^2 > 0, 函数单调增加。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式