高数证明题求解,求求 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 积角累4703 2020-03-01 · TA获得超过4784个赞 知道大有可为答主 回答量:6553 采纳率:83% 帮助的人:210万 我也去答题访问个人页 关注 展开全部 设g(x)=f(x)-x∵f(x)在[0,1]区间上连续,∴g(x)在[0,1]区间上也连续。∵0≤f(x)≤1,∴存在x1∈[0,1],使得f(x1)=0;存在x2∈[0,1],使得f(x2)=1;则:g(x1)=f(x1)-x1=0-x1=-x1≤0,g(x2)=f(x2)-x2=1-x2=≥0,根据介值定理,存在c∈[x1,x2],使得g(c)=f(c)-c=0,即f(c)=c,得证。 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-04-29 高数证明题求解 2 2020-01-05 高数证明题求解 2020-01-09 高数证明题求解 2 2020-05-13 高数证明题,求大神解答 2017-12-28 求解高数证明题 9 2013-12-26 求解高数证明题 2 2017-04-11 高数题,证明题,求大神解答,在线等,急 11 2018-07-25 高数证明题,求解 更多类似问题 > 为你推荐: