七年级奥数题

出几道苏教版... 出几道
苏教版
展开
 我来答
zj053125
2009-12-27 · TA获得超过11.9万个赞
知道顶级答主
回答量:3.5万
采纳率:73%
帮助的人:7.5亿
展开全部
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.

答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9

2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?

答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。

先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。

再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。

再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。

所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320

一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?

轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?

甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓每天运进25吨,几天后乙仓存煤是甲仓的2倍?

甲车间有工人27人,乙车间有工人19人,现在新招20名工人,为使甲车间的人数是乙车间人数的2倍,应把新工人如何分配到两个车间中去?

1,设可以做x张方桌,则
需要做x张桌面,4x条桌腿
x*(1/50)+4x*(1/300)=5
解得 x=150
2,解:设甲乙两地的距离是x千米,
根据题意得: x/(24+2)+x/(24-2)=6
解得 x=71.5
则 ...........
3题
解设x天后已仓的媒是甲仓的2倍
则 2*(200-15x)=70+25x
解得 x=6
4题
解设向甲车间安排x人,则向乙车间安排20-x人
根据题意得 27+x=2*(19+20-x)
解得 x=17

1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?

相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M 元

如下图,第100行的第5个数是几?

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17........

答案是4955

由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,

而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951

所以第100行第5个数为4955

一、计算1+3+5+7+…+1997+1999的值。

二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。

三、已知
1 2 3
--- + --- + --- = 0 ①
x y z

1 6 5
--- - --- - --- =0 ②
x y z

x y z
试求 --- + --- + --- 的值
y z x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?

五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1 求参加竞赛的与未参加竞赛的认识以及初中一年级的人数

答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000 /2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入 ①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人

负二分之一 三分之一
负四分之一 五分之一 负六分之一
负七分之一 八分之一 负九分之一 十分之一。。。。。。
这组数中,第2007行第7个是什么数?

第1行有1个数,
第2行有2个数,
第3行有3个数,
....
所以第n行有n个数,
1到2006行,一起有数:
1+2+3+...+2006=2006*2007/2=2013021 个.
2013021+7=2013028
第2007行第7个的分数是1/2013028.

又发现,在每行第奇数个位置的都是负数.
所以第2007行第7个是: -1/2013028

1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.

答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9

2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?

答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。

先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。

再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。

再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。

所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
已知一列数:1,6,11,16.......
求:
第17位是多少?
前20个的和?

(请用所给的式子做答)

第2题:
有一列数:2.4.6.8........192
求:
他们的和?
请判断48是数列中的第几个?(可以列方程)

3、有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是多少?

4、设M、N都是自然数,记PM是自然数M的各位数字之和,PN是自然数N的各位数字之和。又记M*N是M除以N的余数。已知M+N=4084,那么(PM+PN)*9的值是多少?

5、如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成左右两部份,左边部份面积是38,右边部份面积是65,那么三角形ADG的面积是?

6、某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?

7、已知甲酒精纯酒精含量为72%,乙酒精纯酒精含量为58%,两种酒精混合后纯酒精含量为62%。如果每种酒精取的数量都比原来多15升,混合后纯酒精含量为63.25%,那么第一次混合时,甲酒精取了多少升?

8、在下面算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。那么“新年好”所代表的三位数是多少?

9、有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。那么,原来第一家商场的利润是第二家商场利润的多少倍?

10、从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。如果六个三位数的和是3330,那么这六个三位数中最大的是多少 ?

11、有A、B、C、D、E五支球队参加足球循环赛,每两个队之间都要赛一场。当比赛快要结束时,统计到的成绩如下:

队名 获胜场数 平局场数 失败场数 进球个数 失球个数

A 2 1 0 4 1

B 1 2 0 4 2

C 1 1 1 2 3

D 1 0 3 5 5

E 0 2 1 1 5

已知A与E以及B与C都赛成平局,并且比分都是1:1,那么B与D两队之间的比分是多少?

12、一辆客车和一辆面包车分别从甲、乙两地同时出发相向而行。客车每小时行驶32千米,面包车每小时行驶40千米,两车分别到达乙地和甲地后,立即返回出发地点,返回时的速度,客车第小时增加8千米,面包车每小时减少5千米。已知两次相遇处相距70千米,那么面包车比客车早返回出发地多少小时?

甲(简称1)乙(简称2)二人走在某商场扶手电梯.1从1楼到2楼,2从2楼到1楼.1站在电梯上,每秒走上去两级,(注意:电梯也在动).50秒走到2楼. 2站在电梯上,每秒下去3级,60秒到达底部.已知道电梯运行的方向一直是从下往上.并且1和2双方同时到达目的地.求:静止时,电梯的级数.

从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。如果六个三位数的和是3330,那么这六个三位数中最大的是多少 ?

题在前,答案在后

2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.

4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

5.已知方程组

有解,求k的值.

6.解方程2|x+1|+|x-3|=6.

7.解方程组

8.解不等式||x+3|-|x-1||>2.

9.比较下面两个数的大小:

10.x,y,z均是非负实数,且满足:

x+3y+2z=3,3x+3y+z=4,

求u=3x-2y+4z的最大值与最小值.

11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?

13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.

14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.

15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.

16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求

17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.

18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.

19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.

20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有

23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

24.求不定方程49x-56y+14z=35的整数解.

25.男、女各8人跳集体舞.

(1)如果男女分站两列;

(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.

问各有多少种不同情况?

26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?

27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.

28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?

29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.

30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?

31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?

32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?

33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?

34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?

35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.

(1)试用新合金中第一种合金的重量表示第二种合金的重量;

(2)求新合金中含第二种合金的重量范围;

(3)求新合金中含锰的重量范围.

初一奥数复习题解答
作者:佚名 文章来源:初中数学竞赛辅导 点击数:456 更新时间:2006-2-4

2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

4.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

5.②+③整理得

x=-6y, ④

④代入①得 (k-5)y=0.

当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.

故k=5或k=-1时原方程组有解.

<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有

,所以应舍去.

7.由|x-y|=2得

x-y=2,或x-y=-2,

所以

由前一个方程组得

|2+y|+|y|=4.

当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.

同理,可由后一个方程组解得

所以解为

解①得x≤-3;解②得

-3<x<-2或0<x≤1;

解③得x>1.

所以原不等式解为x<-2或x>0.9.令a=99991111,则

于是

显然有a>1,所以A-B>0,即A>B.

10.由已知可解出y和z

因为y,z为非负实数,所以有

u=3x-2y+4z

11.

所以商式为x2-3x+3,余式为2x-4.

12.小柱的路线是由三条线段组成的折线(如图1-97所示).

我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短).

显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.

13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又

∠AOD+∠DOB=∠AOB=180°,

所以 ∠COE=90°.

因为 ∠COD=55°,

所以∠DOE=90°-55°=35°.

因此,∠DOE的补角为

180°-35°=145°.

14.如图1-99所示.因为BE平分∠ABC,所以

∠CBF=∠ABF,

又因为 ∠CBF=∠CFB,

所以 ∠ABF=∠CFB.

从而

AB‖CD(内错角相等,两直线平行).

由∠CBF=55°及BE平分∠ABC,所以

∠ABC=2×55°=110°. ①

由上证知AB‖CD,所以

∠EDF=∠A=70°, ②

由①,②知

BC‖AE(同侧内角互补,两直线平行).

15.如图1-100所示.EF⊥AB,CD⊥AB,所以

∠EFB=∠CDB=90°,

所以EF‖CD(同位角相等,两直线平行).所以

∠BEF=∠BCD(两直线平行,同位角相等).①又由已知 ∠CDG=∠BEF. ②

由①,② ∠BCD=∠CDG.

所以

BC‖DG(内错角相等,两直线平行).

所以

∠AGD=∠ACB(两直线平行,同位角相等).

16.在△BCD中,

∠DBC+∠C=90°(因为∠BDC=90°),①

又在△ABC中,∠B=∠C,所以

∠A+∠B+∠C=∠A+2∠C=180°,

所以

由①,②

17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以



S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,

所以 S△EFGD=3S△BFD.

设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以

S△CEG=S△BCEE,

从而

所以

SEFDC=3x+2x=5x,

所以

S△BFD∶SEFDC=1∶5.

18.如图1-102所示.

由已知AC‖KL,所以S△ACK=S△ACL,所以

即 KF=FL.

+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!

20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有

(α+1)(β+1)(γ+1)=75.

于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时

(α+1)(β+1)=25.

所以

故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52

23.设凳子有x只,椅子有y只,由题意得

3x+4y+2(x+y)=43,

即 5x+6y=43.

所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.

24.原方程可化为

7x-8y+2z=5.

令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是

而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是

把t的表达式代到x,y的表达式中,得到原方程的全部整数解是

25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有

8×7×6×5×4×3×2×1=40320

种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.

(2)逐个考虑结对问题.

与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有

2×8×7×6×5×4×3×2×1=80640

种不同情况.

26.万位是5的有

4×3×2×1=24(个).

万位是4的有

4×3×2×1=24(个).

万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:

34215,34251,34512,34521.

所以,总共有

24+24+6+4=58

个数大于34152.

27.两车错过所走过的距离为两车长之总和,即

92+84=176(米).

设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有

解之得

解之得x=9(天),x+3=12(天).

解之得x=16(海里/小时).

经检验,x=16海里/小时为所求之原速.

30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得

解之得

故甲车间超额完成税利

乙车间超额完成税利

所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).

31.设甲乙两种商品的原单价分别为x元和y元,依题意可得

由②有

0.9x+1.2y=148.5, ③

由①得x=150-y,代入③有

0. 9(150-y)+1.2y=148. 5,

解之得y=45(元),因而,x=105(元).

32.设去年每把牙刷x元,依题意得

2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,



2×1.68+2×1.3+2×1.3x=5x+2.6,

即 2.4x=2×1.68,

所以 x=1.4(元).

若y为去年每支牙膏价格,则y=1.4+1=2.4(元).

33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则

y=(4-x)(400+200x)

=200(4-x)(2+x)

=200(8+2x-x2)

=-200(x2-2x+1)+200+1600

=-200(x-1)2+1800.

所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.

34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以

0.4(25+x)=0.6x,

解之得x=50分钟.于是

左边=0.4(25+50)=30(千米),

右边= 0.6×50=30(千米),

即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.

35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有

(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.

(3)新合金中,含锰重量为:

x·40%+y·10%+z·50%=400-0.3x,

而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.

http://www.wohuixue.com/gkst/czgkst/czsx/200602/gkst_20060204084433.html
http://www.wohuixue.com/gkst/czgkst/czsx/200602/gkst_20060204084318.html
图片出不来,打开自己看吧
匿名用户
2023-05-13
展开全部

题目:正整数的十位数字比个位数字大 $5$,个位数字比百位数字大 $1$,这个数是 $\\underline{\\hspace{0.5cm}}$?解析:设这个数的个位数字为 $a$,百位数字为 $b$,十位数字为 $c$,则题意转化为$$c = a+5,\\qquad a = b+1$$又因为这个数是三位数,所以 $b$ 的取值为 $1,2,3,\\ldots,8,9$,代入上式可得$$\\begin{aligned}b \u0026= 1\\qquad a=2,c=7 \\\\b \u0026= 2\\qquad a=3,c=8 \\\\\u0026\\cdots\\\\b \u0026= 9\\qquad a=10,c=15\\end{aligned}$$因此,这个数的形式为 $10b+a=10(b+1)+2$,代入得 $\\boxed{12,13,14,\\ldots,101,102,103}$ 共 $92$ 个数符合题意。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-05-13
展开全部

以下是一道七年级奥数题:某商店的原价是400元,现在打八折出售,请问现在的价格是多少?解答:八折,意为打80%,也就是乘以0.8。所以现在的价格为400元 × 0.8 = 320元。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式