计算如图的定积分,其中X是常数
展开全部
因为∫(0,1)(x^b-x^a)/lnxdx=[x^y/lnx](a,b)=∫(a,b)x^ydy
原式=∫(0,1)dx∫(a,b)sin(ln1/x)x^ydy
=∫(a,b)dy∫(0,1)sin(ln1/x)x^ydx(二次积分交换次序)
而∫sin(ln1/x)x^ydx=sin(ln1/x)x^(y+1)/(y+1)-∫cos(ln1/x)(-1/x)x^(y+1)/(y+1)dx
=sin(ln1/x)x^(y+1)/(y+1)+∫cos(ln1/x)x^y/(y+1)dx
=sin(ln1/x)x^(y+1)/(y+1)+cos(ln1/x)x^(y+1)/(y+1)^2-∫(-sin(ln1/x))(-1/x)x^(y+1)/(y+1)^2dx
=sin(ln1/x)x^(y+1)/(y+1)+cos(ln1/x)x^(y+1)/(y+1)^2-∫sin(ln1/x)x^y/(y+1)^2dx
故∫sin(ln1/x)x^ydx=[sin(ln1/x)x^(y+1)/(y+1)+cos(ln1/x)x^(y+1)/(y+1)^2]/(1+1/(y+1)^2)+c
=[sin(ln1/x)x^(y+1)*(y+1)+cos(ln1/x)x^(y+1)]/(y^2+2y+1)+c(用不定积分计算原函数,主要是定积分不怎么会。。)
∫(0,1)sin(ln1/x)x^ydx=1/(y^2+2y+1)
所以原式=∫(a,b)dy/(y^2+2y+1)=[arctan(1+y)](a,b)=arctan(1+b)-arctan(1+a)
(以上括号外未标注符号的,统一是乘号)
原式=∫(0,1)dx∫(a,b)sin(ln1/x)x^ydy
=∫(a,b)dy∫(0,1)sin(ln1/x)x^ydx(二次积分交换次序)
而∫sin(ln1/x)x^ydx=sin(ln1/x)x^(y+1)/(y+1)-∫cos(ln1/x)(-1/x)x^(y+1)/(y+1)dx
=sin(ln1/x)x^(y+1)/(y+1)+∫cos(ln1/x)x^y/(y+1)dx
=sin(ln1/x)x^(y+1)/(y+1)+cos(ln1/x)x^(y+1)/(y+1)^2-∫(-sin(ln1/x))(-1/x)x^(y+1)/(y+1)^2dx
=sin(ln1/x)x^(y+1)/(y+1)+cos(ln1/x)x^(y+1)/(y+1)^2-∫sin(ln1/x)x^y/(y+1)^2dx
故∫sin(ln1/x)x^ydx=[sin(ln1/x)x^(y+1)/(y+1)+cos(ln1/x)x^(y+1)/(y+1)^2]/(1+1/(y+1)^2)+c
=[sin(ln1/x)x^(y+1)*(y+1)+cos(ln1/x)x^(y+1)]/(y^2+2y+1)+c(用不定积分计算原函数,主要是定积分不怎么会。。)
∫(0,1)sin(ln1/x)x^ydx=1/(y^2+2y+1)
所以原式=∫(a,b)dy/(y^2+2y+1)=[arctan(1+y)](a,b)=arctan(1+b)-arctan(1+a)
(以上括号外未标注符号的,统一是乘号)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询