线性代数 特征值与特征向量
2个回答
展开全部
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。
数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。
设a为n阶矩阵,根据关系式ax=λx,可写出(λe-a)x=0,继而写出特征多项式|λe-a|=0,可求出矩阵a有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λie-a)x=0,所求解向量x就是对应的特征值λi的特征向量。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。
数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。
设a为n阶矩阵,根据关系式ax=λx,可写出(λe-a)x=0,继而写出特征多项式|λe-a|=0,可求出矩阵a有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λie-a)x=0,所求解向量x就是对应的特征值λi的特征向量。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询