在三角形ABC中,sinA=sinBsinC,sin²A=sin²B+sin²C,求三角形的形状
展开全部
sin²A=sin²B+sin²C
根据正弦定理
∴a²=b²+c²
∴A=90º
∵sinA=2sinBsinC
∴2sinBsinC=1
∵肆察cos(B-C)-cos(B+C)
=cosBcosC+sinBsinC-(cosBcosC-sinBsinC)
=2sinBsinC
∴cos(B-C)-cos(B+C)=1
又B+C=90º,cos(B+C)=0
∴cos(B-C)=1
∴B-C=0
∴B=C
∴三角形为裂渗茄喊笑等腰三角形
综上,三角形为等腰直角三角形
根据正弦定理
∴a²=b²+c²
∴A=90º
∵sinA=2sinBsinC
∴2sinBsinC=1
∵肆察cos(B-C)-cos(B+C)
=cosBcosC+sinBsinC-(cosBcosC-sinBsinC)
=2sinBsinC
∴cos(B-C)-cos(B+C)=1
又B+C=90º,cos(B+C)=0
∴cos(B-C)=1
∴B-C=0
∴B=C
∴三角形为裂渗茄喊笑等腰三角形
综上,三角形为等腰直角三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询