变限积分求导计算 求导数:∫(上限x,下限0)(x^2-t^2)f(t)dt
2个回答
展开全部
∫(上限x,下限0)(x^2-t^2)f(t)dt=∫(上限x,下限0)x^2f(t)dt-∫(上限x,下限0)t^2f(t)dt
现在分成两部分了,第一部分把x^2提出来,∫(上限x,下限0)(x^2-t^2)f(t)dt=x^2∫(上限x,下限0)f(t)dt-∫(上限x,下限0)t^2f(t)dt,所以原式求导=2x∫(上限x,下限0)f(t)dt+x^2f(x)-x^2f(x)=2x∫(上限x,下限0)f(t)dt
现在分成两部分了,第一部分把x^2提出来,∫(上限x,下限0)(x^2-t^2)f(t)dt=x^2∫(上限x,下限0)f(t)dt-∫(上限x,下限0)t^2f(t)dt,所以原式求导=2x∫(上限x,下限0)f(t)dt+x^2f(x)-x^2f(x)=2x∫(上限x,下限0)f(t)dt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |