求积分∫ln{1+[(1+x)/x]^1/2}dx (x>0)
2个回答
展开全部
分部积分,
原式=xln{1+[(1+x)/x]^1/2}-∫(-1/2)sqrt(x/(1+x))/x(1+sqrt((1+x)/x)dx
考虑后面的部分,令u=sqrt((1+x)/x),x=1/(u^2-1)
带入化简得到∫(1/2-1/2u)2udu/(1-u^2)^2=-∫du/(1+u)(1-u^2)=(-1/2)∫du/(1+u)^2-(1/4)∫du/(1-u)-(1/4)∫du/(1+u)=1/2(1+u)+(1/4)ln[(1-u)/(1+u)]
原式=xln{1+[(1+x)/x]^1/2}+1/2(1+sqrt((1+x)/x))+(1/4)ln[(1-sqrt((1+x)/x))/(1+sqrt((1+x)/x))]
原式=xln{1+[(1+x)/x]^1/2}-∫(-1/2)sqrt(x/(1+x))/x(1+sqrt((1+x)/x)dx
考虑后面的部分,令u=sqrt((1+x)/x),x=1/(u^2-1)
带入化简得到∫(1/2-1/2u)2udu/(1-u^2)^2=-∫du/(1+u)(1-u^2)=(-1/2)∫du/(1+u)^2-(1/4)∫du/(1-u)-(1/4)∫du/(1+u)=1/2(1+u)+(1/4)ln[(1-u)/(1+u)]
原式=xln{1+[(1+x)/x]^1/2}+1/2(1+sqrt((1+x)/x))+(1/4)ln[(1-sqrt((1+x)/x))/(1+sqrt((1+x)/x))]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询