统计学上的P值的含义通俗
统计学上的P值的含义通俗首先解释下“有统计学意义”和“显著差异”两个概念:”有统计学意义"和"差异显著"是两个...
统计学上的P值的含义通俗 首先解释下“有统计学意义”和“显著差异” 两个概念:”有统计学意义"和"差异显著"是两个不同的概念,"差异显
展开
2020-09-29 · 专注大学生职业技能培训在线教育品牌
关注
展开全部
统计学上的P值的含义通俗
首先解释下“有统计学意义”和“显著差异” 两个概念:
”有统计学意义"和"差异显著"是两个不同的概念,"差异显著"易给人一种误导,
原来两概念在统计学中经常有点通用,现在明确地只能用“有统计学意义”。
P<0.05是指假设H0(即两总体没区别)成立的可能性概率在5%以下,
a就是允许犯Ⅰ类错误(拒绝了正确的无效假设H0)的概率,
一般在做假设检验之前先定好,
如果a=0.05,表示允许犯Ⅰ类错误的概率为0.05,所以当P<0.05时,
说明在a=0.05允许的范围内,认为两总体是有差异的,
即两总体差异有统计学意义(指在a=0.05的统计学参数情况下);
如果此时P=0.04,而先设定a=0.01,则认为两总体差异无统计学意义
(指在a=0.01的统计学参数情况下),虽然两总体没变,两总体差异也没变;
所以 ”有统计学意义"并不等同于"差异显著" ,举个例子:两组数:
A组:3, 3.05, 3.01, 3.04, 2.95;
B组:3.2, 3.1, 3.15, 3.14, 3.12;
两组数差异(均数)并不大,但P<0.001,设定a=0.01或0.05,则认为两总体差异统计学意义。这主要与两组数的标准差有关。
如果写成两总体差异显著,易认为两组数(均数)差别大。
第一类错误与第二类错误 通俗解释:
H0:一个真心爱你的男生
H1:一个不是真心爱你的男生
如果H0实际上成立,而你凭经验拒绝了H0,也就是说,
你拒绝了一个你认为不爱你而实际上真心爱你的男生,那么你就犯了第Ⅰ类错误;
如果H0实际上不成立,而你接受了H0,同样的道理,
你接受了一个你感觉爱你而实际上并不爱你的男生,那么你就犯了第Ⅱ类错误。
如果要同时减小犯第Ⅰ类错误和第Ⅱ类错误的概率,那就只能增加恋爱的次数n,
比如一个经历过n=100次恋爱的女生,第101次恋爱犯第Ⅰ类错误和第Ⅱ类错误的概率就会小很多了。
统计学上把保守的、传统的观点作为原假设H0, 新颖的、感兴趣的、想去论证的观点作为备择假设H1
统计学P值与显著性水平之间的比较:
就好比一个犯罪嫌疑人 在没有确凿的证据前都只能以他无罪为原假设
因为一个人无罪判他有罪 比 有罪判无罪 的后果严重的多 大家都不愿被冤枉
所以推广开来 你想证明一班的成绩比二班好 原假设就设为一班二班成绩相同,
其中出现的个别成绩有差异,是由于抽样误差所造成的,纯在偶然性;
备择假设就设为一班比二班成绩好,其中样本中出现的一班二班成绩差异不是偶然出现的,
具有高度统计学意义,
因此, 一般把显著性水平设定为0.05,当P值小于0.05时, 我们认为因为偶然性而造成的成绩差异的概率比较小,
因此拒绝原假设,就可以接受一班成绩比二班好的事实;
若P值比0.05大就说明没有足够证据证明一班成绩比二班好,原假设中因为抽样误差而造成的成绩差异的可能性比较高,
保守起见拒绝备择假设 接受原假设。
首先解释下“有统计学意义”和“显著差异” 两个概念:
”有统计学意义"和"差异显著"是两个不同的概念,"差异显著"易给人一种误导,
原来两概念在统计学中经常有点通用,现在明确地只能用“有统计学意义”。
P<0.05是指假设H0(即两总体没区别)成立的可能性概率在5%以下,
a就是允许犯Ⅰ类错误(拒绝了正确的无效假设H0)的概率,
一般在做假设检验之前先定好,
如果a=0.05,表示允许犯Ⅰ类错误的概率为0.05,所以当P<0.05时,
说明在a=0.05允许的范围内,认为两总体是有差异的,
即两总体差异有统计学意义(指在a=0.05的统计学参数情况下);
如果此时P=0.04,而先设定a=0.01,则认为两总体差异无统计学意义
(指在a=0.01的统计学参数情况下),虽然两总体没变,两总体差异也没变;
所以 ”有统计学意义"并不等同于"差异显著" ,举个例子:两组数:
A组:3, 3.05, 3.01, 3.04, 2.95;
B组:3.2, 3.1, 3.15, 3.14, 3.12;
两组数差异(均数)并不大,但P<0.001,设定a=0.01或0.05,则认为两总体差异统计学意义。这主要与两组数的标准差有关。
如果写成两总体差异显著,易认为两组数(均数)差别大。
第一类错误与第二类错误 通俗解释:
H0:一个真心爱你的男生
H1:一个不是真心爱你的男生
如果H0实际上成立,而你凭经验拒绝了H0,也就是说,
你拒绝了一个你认为不爱你而实际上真心爱你的男生,那么你就犯了第Ⅰ类错误;
如果H0实际上不成立,而你接受了H0,同样的道理,
你接受了一个你感觉爱你而实际上并不爱你的男生,那么你就犯了第Ⅱ类错误。
如果要同时减小犯第Ⅰ类错误和第Ⅱ类错误的概率,那就只能增加恋爱的次数n,
比如一个经历过n=100次恋爱的女生,第101次恋爱犯第Ⅰ类错误和第Ⅱ类错误的概率就会小很多了。
统计学上把保守的、传统的观点作为原假设H0, 新颖的、感兴趣的、想去论证的观点作为备择假设H1
统计学P值与显著性水平之间的比较:
就好比一个犯罪嫌疑人 在没有确凿的证据前都只能以他无罪为原假设
因为一个人无罪判他有罪 比 有罪判无罪 的后果严重的多 大家都不愿被冤枉
所以推广开来 你想证明一班的成绩比二班好 原假设就设为一班二班成绩相同,
其中出现的个别成绩有差异,是由于抽样误差所造成的,纯在偶然性;
备择假设就设为一班比二班成绩好,其中样本中出现的一班二班成绩差异不是偶然出现的,
具有高度统计学意义,
因此, 一般把显著性水平设定为0.05,当P值小于0.05时, 我们认为因为偶然性而造成的成绩差异的概率比较小,
因此拒绝原假设,就可以接受一班成绩比二班好的事实;
若P值比0.05大就说明没有足够证据证明一班成绩比二班好,原假设中因为抽样误差而造成的成绩差异的可能性比较高,
保守起见拒绝备择假设 接受原假设。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |