请高手解答一下,在线等!!!一共四题!
1.已知三角形ABC的顶点A(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,角B的平分线所在直线的方程为x-4y+10=0,求BC边所在直线的方程。2....
1.已知三角形ABC的顶点A(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,角B的平分线所在直线的方程为x-4y+10=0,求BC边所在直线的方程。 2.在数列{an}中,已知a4是a2,a8的等比中项,且a3+1是a2,a6的等差中项。 (1) 求数列{an}的通项公式 (2) 数列{bn}满足:对于任意的n属于正整数(N*),(a1除以b1)+(a2除以b2)+……+(an除以bn)=2-((n+2)除以2的n次方))都成立, 1) 求{bn}的通项公式 2)设数列{cn}满足cn=log以2为底的{bn}中第15-2n项 当n为何值时数列{cn}前n项和Sn最大。 3.已知各项均为正数的数列{an}的前n项和为Sn,且0.5 , an, Sn成等差数列 (1) 求数列{an}的通项公式 (2) 若数列{bn}的前n项和为Tn,且满足(an)的平方=2的(bn-4)次方求满足不等式(1/T1)+(1/T2)+(1/T3)+……+(1/Tn)<=(2011/2012)的自然数n最大值 4.设数列{an}的前n项和为Sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,(m属于N*,m为常数,m不等于3) (1) 求通项公式an (2) 若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=1.5*f({bn}中的第n-1项)(n属于N*,n>=2)求证{(1/bn)}为等差数列,并求通项公式bn
展开
1个回答
展开全部
1.
设B(x0,y0),AB中点D(
(x0+3)/2,
(y0-1)/2
)
B在直线x-4y+10=0上,x0-4y0+10=0
D在直线6x+10y-59上,
3(x0+3)+5(y0-1)-59=0
即3x0+5y0=55
y0=5
x0=10
B(10,5)
AB直线:y-5=[(5+1)/(10-3)](x-10)
k1=6/7
角平分线l1:
6x+10y-59=0
k2=-3/5
AB和l1夹角为a
tana=(k2-k1)/(1+k1k2)=(-6/7-3/5)/(1-18/35)=-51/17=-3
a<0
l1和BC的夹角也为a
设BC的斜率为k3
k3=(tana+k2)/(1-tana*
k2)=(-3-3/5)/(1-9/5)=18/4=9/2
BC直线为:(y-5)
=
(9/2)*(x-10)
2
1)
(a4)^2=
a2*a8
2(a3+1)=a2+a6
a3-a2=a6-a3-2
如果是等差数列,
d=a3-a2
a6-a3=3d
d=3d-2,d=1
(a2+2d)^2=a2*(a2+6d)
(a2+2)^2=a2(a2+6)
4a2+4=6a2
a2=2
a1=1
an=a1+(n-1)d=n
2)
a1/b1+a2/b2+..+an/bn=2-(n+2)/2^n
设kn=an/bn
k1+k2=..+kn=2-(n+2)/2^n
kn=Sn-Sn-1=(n+1)/2^(n-1)-(n+2)/2^n=n/2^n
bn=an/kn=2^n
cn=log<2>bn
n=15-2n
=n
S(cn)=(1+15-2n)(15-2n)/2
=(15-2n)(8-n)
=2n^2-31n+120
=2(n-31/4)^2+120-31^2/8
15-2n>0
n=7时,cn的前n项和最大
3
2an=0.5+Sn
2a1=0.5+S1
a1=0.5
2an-1=0.5+Sn-1
an=Sn-Sn-1=2(an-an-1)
an=2an-1
an=a1*2^(n-1)=0.5*2^(n-1)=2^(n-2)
an^2=2^(bn-4)
2^(2n-4)=2^(bn-4)
bn=2n,b1=2
Tn=(2+2n)*n/2=n(n+1)
1/Tn=1/[n(n+1)]=(1/n-1/(n+1))
[(1-1/(n+1)]
<=
2011/2012
1-1/(n+1)<=2011/2012
n=2011
4.(3-m)x+2my-m-3=0上,(m属于N*,m为常数,m不等于3)
(1)
求通项公式an
(3-m)Sn+2man-m-3=0
(3-m)a1+2ma1=m+3
a1=1
(3-m)Sn-1+2man-1-m-3=0
(3-m)(Sn-Sn-1)+2m(an-an-1)=0
(3-m)an+2m(an-an-1)=0
(m+3)an=2man-1
an/an-1=2m/(m+3)
an=a1*[2m/(m+3)]^(n-1)=[2m/(m+3)]^(n-1)
(2)
若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=1.5*f({bn}中的第n-1项)(n属于N*,n>=2)
b1=1,
bn=1.5*f(bn-1)=1.5*
2bn-1/(bn-1+3)=3bn-1/(bn-1+3)
1/bn=1/bn-1+1/3
1/bn等差数列
设B(x0,y0),AB中点D(
(x0+3)/2,
(y0-1)/2
)
B在直线x-4y+10=0上,x0-4y0+10=0
D在直线6x+10y-59上,
3(x0+3)+5(y0-1)-59=0
即3x0+5y0=55
y0=5
x0=10
B(10,5)
AB直线:y-5=[(5+1)/(10-3)](x-10)
k1=6/7
角平分线l1:
6x+10y-59=0
k2=-3/5
AB和l1夹角为a
tana=(k2-k1)/(1+k1k2)=(-6/7-3/5)/(1-18/35)=-51/17=-3
a<0
l1和BC的夹角也为a
设BC的斜率为k3
k3=(tana+k2)/(1-tana*
k2)=(-3-3/5)/(1-9/5)=18/4=9/2
BC直线为:(y-5)
=
(9/2)*(x-10)
2
1)
(a4)^2=
a2*a8
2(a3+1)=a2+a6
a3-a2=a6-a3-2
如果是等差数列,
d=a3-a2
a6-a3=3d
d=3d-2,d=1
(a2+2d)^2=a2*(a2+6d)
(a2+2)^2=a2(a2+6)
4a2+4=6a2
a2=2
a1=1
an=a1+(n-1)d=n
2)
a1/b1+a2/b2+..+an/bn=2-(n+2)/2^n
设kn=an/bn
k1+k2=..+kn=2-(n+2)/2^n
kn=Sn-Sn-1=(n+1)/2^(n-1)-(n+2)/2^n=n/2^n
bn=an/kn=2^n
cn=log<2>bn
n=15-2n
=n
S(cn)=(1+15-2n)(15-2n)/2
=(15-2n)(8-n)
=2n^2-31n+120
=2(n-31/4)^2+120-31^2/8
15-2n>0
n=7时,cn的前n项和最大
3
2an=0.5+Sn
2a1=0.5+S1
a1=0.5
2an-1=0.5+Sn-1
an=Sn-Sn-1=2(an-an-1)
an=2an-1
an=a1*2^(n-1)=0.5*2^(n-1)=2^(n-2)
an^2=2^(bn-4)
2^(2n-4)=2^(bn-4)
bn=2n,b1=2
Tn=(2+2n)*n/2=n(n+1)
1/Tn=1/[n(n+1)]=(1/n-1/(n+1))
[(1-1/(n+1)]
<=
2011/2012
1-1/(n+1)<=2011/2012
n=2011
4.(3-m)x+2my-m-3=0上,(m属于N*,m为常数,m不等于3)
(1)
求通项公式an
(3-m)Sn+2man-m-3=0
(3-m)a1+2ma1=m+3
a1=1
(3-m)Sn-1+2man-1-m-3=0
(3-m)(Sn-Sn-1)+2m(an-an-1)=0
(3-m)an+2m(an-an-1)=0
(m+3)an=2man-1
an/an-1=2m/(m+3)
an=a1*[2m/(m+3)]^(n-1)=[2m/(m+3)]^(n-1)
(2)
若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=1.5*f({bn}中的第n-1项)(n属于N*,n>=2)
b1=1,
bn=1.5*f(bn-1)=1.5*
2bn-1/(bn-1+3)=3bn-1/(bn-1+3)
1/bn=1/bn-1+1/3
1/bn等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询