如何通俗的理解收敛数列的保号性?

 我来答
暴走爱生活55
高能答主

2021-09-25 · 我是生活小达人,乐于助人就是我
暴走爱生活55
采纳数:4157 获赞数:1692704

向TA提问 私信TA
展开全部

收敛数列的保号性通俗点说,就是如果数列收敛于正数,则从某项往后全都是正数如果数列收敛于负数,则从某项后全都是负数。

收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。

相关性质

1、唯一性

如果数列Xn收敛,每个收敛的数列只有一个极限。

2、有界性

定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。

定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式