无穷间断点可以是无穷小吗
1个回答
展开全部
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
只要左右极限中,至少1个是无穷大,那么这个间断点就是无穷间断点,无需两个单边极限都是无穷大。两个单边极限都是无穷大,自然也是无穷间断点。
定义
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。
(2)函数f(x)在点x0的左右极限中至少有一个不存在。
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询