怎么证明偏导数存在?
1个回答
展开全部
对于一元函数有,可微<=>可导=>连续=>可积
对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。
可导与连续的关系:可导必连续,连续不一定可导;
可微与连续的关系:可微与可导是一样的;
可积与连续的关系:可积不一定连续,连续必定可积;
可导与可积的关系:可导一般可积,可积推不出一定可导;
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询