如何理解函数极限的局部保号性?

 我来答
亲爱的郡爱生活
高能答主

2021-09-30 · 生活小百科,百科达人!
亲爱的郡爱生活
采纳数:1581 获赞数:38977

向TA提问 私信TA
展开全部

局部保号性指的就是如果函数在某一点的极限不等于零,那么在这个点的临近(就是定理中的空心邻域),函数具有保持符号(与极限的符号相同)的性质。

设函数f(x)在a的极限为A,所谓的函数极限的局部保号性就是A的符号能保证函数f(x)本身在a 的附近的符号与A相同。这样就可以用极限很容易证明出函数的不等式。



有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N。

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)。

中智咨询
2024-08-28 广告
证明它的逆否命题若lim f(x)=A<0则f(x)<0(用保号性)可推若f(x)>=0则lim f(x)=A>=0例如:设Lim(x→x0)F(x)=A。若A》0,则推论已成立。若A<0,则对于-A/2&gt... 点击进入详情页
本回答由中智咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式