如何证明样本方差的期望等于总体方差?
设总体为X,抽取n个i,i,d,的样本X1,X2,...,Xn,其样本均值为
Y = (X1+X2+...+Xn)/n
其样本方差为
S =( (Y-X1)^2 + (Y-X2)^2 + ...+ (Y-Xn)^2 ) / (n-1)
为了记号方便,只看S的分子部分,设为A
则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))
=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )
注意 EX1 = EX2 = ...= EXn = EY = EX;
VarX1 = VarX2 = ...= VarXn = VarX = E(X^2) - (EX)^2
VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)
所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)
= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)
= (n-1) VarX
所以 E S = VarX,得证。
扩展资料:
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。