如何证明样本方差的期望等于总体方差?

 我来答
火虎生活小达人
高能答主

2021-02-05 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:5246
采纳率:100%
帮助的人:169万
展开全部

设总体为X,抽取n个i,i,d,的样本X1,X2,...,Xn,其样本均值为

Y = (X1+X2+...+Xn)/n

其样本方差为

S =( (Y-X1)^2 + (Y-X2)^2 + ...+ (Y-Xn)^2 ) / (n-1)

为了记号方便,只看S的分子部分,设为A

则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))

=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )

注意 EX1 = EX2 = ...= EXn = EY = EX;

VarX1 = VarX2 = ...= VarXn = VarX = E(X^2) - (EX)^2

VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)

所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)

= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)

= (n-1) VarX

所以 E S = VarX,得证。

扩展资料:

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式