f(x)=x•cot(x)的单调性,怎么不用导数,用初等方法证明,急求!!!谢谢!!! 5
3个回答
展开全部
初等方法可以尝试利用同增异减原则,因为y=cotx在(-kπ, -kπ+π)内单调递减,而y=x恒增,所以f(x)=xcotx在(-kπ, -kπ+π)内单调递减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
讨论在区间(0,π)
lim<x→0+>f(x) = lim<x→0+>xcotx = lim<x→0+>x/tanx = 1,
f(π/6) = (π/6)·√3 = 0.9069
f(π/4) = (π/4)·1 = 0.7854
f(π/3) = (π/3)·√3/3 = 0.6046
f(π/2) = 0
f(2π/3) = (2π/3)·(-√3/3) = -1.209
f(3π/4) = (3π/4)·(-1) = -2.356
f(5π/6) = (5π/6)·(-√3) = -4.534
lim<x→π->f(x) = lim<x→π->xcotx = lim<x→π->x/tanx = -∞.
函数在区间(0,π) 内连续, 则 在区间(0,π) 内单调减少。
lim<x→0+>f(x) = lim<x→0+>xcotx = lim<x→0+>x/tanx = 1,
f(π/6) = (π/6)·√3 = 0.9069
f(π/4) = (π/4)·1 = 0.7854
f(π/3) = (π/3)·√3/3 = 0.6046
f(π/2) = 0
f(2π/3) = (2π/3)·(-√3/3) = -1.209
f(3π/4) = (3π/4)·(-1) = -2.356
f(5π/6) = (5π/6)·(-√3) = -4.534
lim<x→π->f(x) = lim<x→π->xcotx = lim<x→π->x/tanx = -∞.
函数在区间(0,π) 内连续, 则 在区间(0,π) 内单调减少。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询